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Entropy and related functions -

! The Shannon information content of an outcome x is defined to be

! It is measured in bits 

! The word bit is is also used to denote a variable whose value is 0 or 1 (binary digit)

! h(ai) is indeed a natural measure of the information content of the event x = ai. 

! When ai is almost certain (P(ai) near to 1) 

the occurrence of a has a small information content

! When ai is very unlikely (P(ai) near to 0) 

the occurrence of a has a large information content

The Shannon information content of an outcome 
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h(x) = log2
1

P(x)
= − log2 P(x)

P(x)

h(x)



Entropy and related functions -

! The entropy of an ensemble X is defined to be the average Shannon information content 

of an outcome:  

 

 

with the convention for P(x) = 0 that 0 × log 1/0 ≡ 0,

Entropy of an ensemble X 
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H (x) = P(x)
x∈AX
∑ log2

1
P(x)

= − P(x)
x∈AX
∑ log2 P(x)

lim
θ→0+

θ log 1θ = 0

P(x)

P(x)log2 1P(x)
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! The contribution of each outcome x to the entropy of an ensemble X is 

The contribution of each outcome x 
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P(x)

P(x)log2 1P(x)

P(x)log2 1P(x)

0.25 0.50.368

0.531
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An example 
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Shannon information contents of the outcomes a–z from a text. 
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What do you notice about your solutions? Does each answer depend on the
detailed contents of each urn?

The details of the other possible outcomes and their probabilities are ir-
relevant. All that matters is the probability of the outcome that actually
happened (here, that the ball drawn was black) given the different hypothe-
ses. We need only to know the likelihood, i.e., how the probability of the data
that happened varies with the hypothesis. This simple rule about inference is
known as the likelihood principle.

The likelihood principle: given a generative model for data d given
parameters θ, P (d |θ), and having observed a particular outcome
d1, all inferences and predictions should depend only on the function
P (d1 |θ).

In spite of the simplicity of this principle, many classical statistical methods
violate it.

2.4 Definition of entropy and related functions

The Shannon information content of an outcome x is defined to be

h(x) = log2
1

P (x)
. (2.34)

It is measured in bits. [The word ‘bit’ is also used to denote a variable
whose value is 0 or 1; I hope context will always make clear which of the
two meanings is intended.]

In the next few chapters, we will establish that the Shannon information
content h(ai) is indeed a natural measure of the information content
of the event x = ai. At that point, we will shorten the name of this
quantity to ‘the information content’.

i ai pi h(pi)

1 a .0575 4.1
2 b .0128 6.3
3 c .0263 5.2
4 d .0285 5.1
5 e .0913 3.5
6 f .0173 5.9
7 g .0133 6.2
8 h .0313 5.0
9 i .0599 4.1
10 j .0006 10.7
11 k .0084 6.9
12 l .0335 4.9
13 m .0235 5.4
14 n .0596 4.1
15 o .0689 3.9
16 p .0192 5.7
17 q .0008 10.3
18 r .0508 4.3
19 s .0567 4.1
20 t .0706 3.8
21 u .0334 4.9
22 v .0069 7.2
23 w .0119 6.4
24 x .0073 7.1
25 y .0164 5.9
26 z .0007 10.4
27 - .1928 2.4

∑

i

pi log2
1
pi

4.1

Table 2.9. Shannon information
contents of the outcomes a–z.

The fourth column in table 2.9 shows the Shannon information content
of the 27 possible outcomes when a random character is picked from
an English document. The outcome x = z has a Shannon information
content of 10.4 bits, and x = e has an information content of 3.5 bits.

The entropy of an ensemble X is defined to be the average Shannon in-
formation content of an outcome:

H(X) ≡
∑

x∈AX

P (x) log
1

P (x)
, (2.35)

with the convention for P (x) = 0 that 0 × log 1/0 ≡ 0, since
limθ→0+ θ log 1/θ = 0.

Like the information content, entropy is measured in bits.

When it is convenient, we may also write H(X) as H(p), where p is
the vector (p1, p2, . . . , pI). Another name for the entropy of X is the
uncertainty of X.

Example 2.12. The entropy of a randomly selected letter in an English docu-
ment is about 4.11 bits, assuming its probability is as given in table 2.9.
We obtain this number by averaging log 1/pi (shown in the fourth col-
umn) under the probability distribution pi (shown in the third column).

H(X) = 4.1 bits
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! H(X) ≥ 0

! H(X) = 0 if and only if pi = 1 for one i.

! Entropy is maximized if p is uniform

!                                  if and only if                   for all i

! Case of binary ensemble AX = {a1, a2} and P(a1) = p and consequently P(a2) = 1 - p

Some properties of H(X) 

10

H (X) ≤ log AX( )
H (X) = log AX( ) pi =

1
AX

p

H(X)

H(X) = 1 bit 

only when p = 1/2
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! The redundancy of X is:

! When the entropy (or uncertainty) is maximal the redundancy is minimal 

! When the entropy (or uncertainty) is minimal the redundancy is maximal 

! Case of binary ensemble AX = {a1, a2} and P(a1) = p and consequently P(a2) = 1 - p

Redundancy of X 
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1− H (X)
log AX

p

Redundancy
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! The Joint Entropy of X, Y

! Entropy is additive for independent random variables:

Joint Entropy of X, Y

12

H (X,Y ) = P(x, y)log2
1

P(x, y)x∈AX ,y∈AY
∑

H (X,Y ) = H (X)+ H (Y ) iff P(x, y) = P(x)P(y)
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Entropy and related functions -

! The entropy function satisfies a recursive property that can be very useful when computing 

entropies. 

! We can write H(X) as H(p), where p is the probability vector associated with the 

ensemble X. 

Decomposability of the entropy 

14

AX = {0, 1, 2}

P(x = 0) = 1/2; P(x = 1) = 1/4; P(x = 2) = 1/4;  

H(X) = 1/2 log 2 + 1/4log 4 + 1/4 log4 = 1.5

H(X) = H(1/2, 1/4, 1/4) = 1.5

H(X) = H(1/2, 1/2) +  1/2 H(1/2, 1/2) = 1.5

p = [1/2, 1/4, 1/4]
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! For any probability distribution p = {p1, p2 ,…, pI}

! And can be more generalized for 

Decomposability of the entropy 

15

H (p) = H (p1,1− p1)+ (1− p1)H
p2
1−p1 ,

p3
1−p1 ,...,

pI
1−p1( )
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revealing a binary variable whose probability distribution is {1/2, 1/2}. This
revelation has an entropy H(1/2, 1/2) = 1

2 log 2 + 1
2 log 2 = 1bit. If x is not 0,

we learn the value of the second coin flip. This too is a binary variable whose
probability distribution is {1/2, 1/2}, and whose entropy is 1 bit. We only get
to experience the second revelation half the time, however, so the entropy can
be written:

H(X) = H(1/2, 1/2) + 1/2 H(1/2, 1/2). (2.42)

Generalizing, the observation we are making about the entropy of any
probability distribution p = {p1, p2, . . . , pI} is that

H(p) = H(p1, 1−p1) + (1−p1)H
(

p2

1−p1
,

p3

1−p1
, . . . ,

pI

1−p1

)
. (2.43)

When it’s written as a formula, this property looks regrettably ugly; nev-
ertheless it is a simple property and one that you should make use of.

Generalizing further, the entropy has the property for any m that

H(p) = H [(p1 + p2 + · · · + pm), (pm+1 + pm+2 + · · · + pI)]

+(p1 + · · · + pm)H
(

p1

(p1 + · · · + pm)
, . . . ,

pm

(p1 + · · · + pm)

)

+(pm+1 + · · · + pI)H
(

pm+1

(pm+1 + · · · + pI)
, . . . ,

pI

(pm+1 + · · · + pI)

)
.

(2.44)

Example 2.13. A source produces a character x from the alphabet A =
{0, 1, . . . , 9, a, b, . . . , z}; with probability 1/3, x is a numeral (0, . . . , 9);
with probability 1/3, x is a vowel (a, e, i, o, u); and with probability 1/3
it’s one of the 21 consonants. All numerals are equiprobable, and the
same goes for vowels and consonants. Estimate the entropy of X.

Solution. log 3 + 1
3(log 10 + log 5 + log 21) = log 3 + 1

3 log 1050 " log 30 bits. !

2.6 Gibbs’ inequality
The ‘ei’ in Leibler is pronounced
the same as in heist.The relative entropy or Kullback–Leibler divergence between two

probability distributions P (x) and Q(x) that are defined over the same
alphabet AX is

DKL(P ||Q) =
∑

x

P (x) log
P (x)
Q(x)

. (2.45)

The relative entropy satisfies Gibbs’ inequality

DKL(P ||Q) ≥ 0 (2.46)

with equality only if P = Q. Note that in general the relative entropy
is not symmetric under interchange of the distributions P and Q: in
general DKL(P ||Q) $= DKL(Q||P ), so DKL, although it is sometimes
called the ‘KL distance’, is not strictly a distance. The relative entropy
is important in pattern recognition and neural networks, as well as in
information theory.

Gibbs’ inequality is probably the most important inequality in this book. It,
and many other inequalities, can be proved using the concept of convexity.
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! And can be more generalized for 

Decomposability of the entropy 
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Example 2.13. A source produces a character x from the alphabet A =
{0, 1, . . . , 9, a, b, . . . , z}; with probability 1/3, x is a numeral (0, . . . , 9);
with probability 1/3, x is a vowel (a, e, i, o, u); and with probability 1/3
it’s one of the 21 consonants. All numerals are equiprobable, and the
same goes for vowels and consonants. Estimate the entropy of X.

Solution. log 3 + 1
3(log 10 + log 5 + log 21) = log 3 + 1

3 log 1050 " log 30 bits. !

2.6 Gibbs’ inequality
The ‘ei’ in Leibler is pronounced
the same as in heist.The relative entropy or Kullback–Leibler divergence between two

probability distributions P (x) and Q(x) that are defined over the same
alphabet AX is

DKL(P ||Q) =
∑

x

P (x) log
P (x)
Q(x)

. (2.45)

The relative entropy satisfies Gibbs’ inequality

DKL(P ||Q) ≥ 0 (2.46)

with equality only if P = Q. Note that in general the relative entropy
is not symmetric under interchange of the distributions P and Q: in
general DKL(P ||Q) $= DKL(Q||P ), so DKL, although it is sometimes
called the ‘KL distance’, is not strictly a distance. The relative entropy
is important in pattern recognition and neural networks, as well as in
information theory.

Gibbs’ inequality is probably the most important inequality in this book. It,
and many other inequalities, can be proved using the concept of convexity.

∑ = A ∑ = B

H (p) = H A,B( )+ AH p '1, p '2 ,..., p 'm( )+ BH p ''m+1, p ''m+2,..., p ''I( )

p1, p2,...pm pm+1, pm+2,...pI

p 'i =
pi
A p '' j =

pj
B
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! A source produces a character x from the alphabet A = {0, 1, …, 9, a, b , …, z}

! With probability 1/3, x is a numeral (0,…,9);

! With probability 1/3, x is a vowel (a,e,i,o,u); 

! With probability 1/3 it’s one of the 21 consonants. 

! All numerals are equiprobable, and the same goes for vowels and consonants.

Decomposability of the entropy: an example 
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5 vowels

1
3

10 numerals 21 consonants

1
3

1
3

H (X) = H 1
3, 13, 13( )+ 1

3 (log5 + log10 + log21)
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Gibbs’ inequality
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! The relative entropy or Kullback–Leibler divergence between two probability 

distributions P(x) and Q(x) that are defined over the same alphabet AX is 

! The relative entropy satisfies Gibbs’ inequality

! In general 

Relative entropy or Kullback–Leibler divergence 

19

DKL (P ||Q) = P(x)log P(x)
Q(x)x

∑

DKL (P ||Q) ≥ 0 DKL (P ||Q) = 0 only if P =Q

DKL (P ||Q) ≠ DKL (Q || P)

For more information read here 

https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
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Relative entropy
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DKL (P ||Q) = 0,0147

P(x) Q(x) P(x)/Q(x) P(x)log2(P(x)/Q(x))

0,5 0,5 1,00 0,00
0,25 0,3 0,83 -0,07
0,25 0,2 1,25 0,08

DKL (P ||Q) = 0,0145

Q(x) P(x) Q(x)/P(x) Q(x)Log2(Q(x)/P(x))

0,5 0,5 1,00 0,00
0,3 0,25 1,20 0,08
0,2 0,25 0,80 -0,06

DKL (P ||Q) = 0,0850

P(x) Q(x) P(x)/Q(x) P(x)log2(P(x)/Q(x))

0,5 0,3333 1,50 0,29
0,25 0,3333 0,75 -0,10
0,25 0,3333 0,75 -0,10

DKL(P ||Q) = 0,0817

Q(x) P(x) Q(x)/P(x) Q(x)Log2(Q(x)/P(x))

0,3333 0,5 0,67 -0,19
0,3333 0,25 1,33 0,14
0,3333 0,25 1,33 0,14

H 1
3 , 13 , 13( ) = log2 3= 1.585bits

H 0.5,0.25,0.25( ) = 1.5bits
H 0.5,0.3,0.20( ) = 1.485bits

DKL (P ||Q) = P(x)log P(x)
Q(x)x

∑
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! Convex ⌣ functions. A function f(x) is convex ⌣ over (a, b) if every chord of the function 

lies above the function, as shown in figure, that is, for all x1, x2 ∈(a, b) and 0≤ λ ≤1,  

! A function  is strictly convex ⌣ if, for all  

x1, x2 ∈(a, b) the equality holds only for 

λ = 0 and λ = 1. 

Convex (and concave) functions 

22

f (λx1 + (1− λ)x2 ) ≤ λ f (x1)+ (1− λ) f (x2 )
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2.7 Jensen’s inequality for convex functions

The words ‘convex!’ and ‘concave"’ may be pronounced ‘convex-smile’ and
‘concave-frown’. This terminology has useful redundancy: while one may forget
which way up ‘convex’ and ‘concave’ are, it is harder to confuse a smile with a
frown.

Convex! functions. A function f(x) is convex! over (a, b) if every chord

x1 x2

x∗ = λx1 + (1 − λ)x2

f(x∗)

λf(x1) + (1 − λ)f(x2)

Figure 2.10. Definition of
convexity.

of the function lies above the function, as shown in figure 2.10; that is,
for all x1, x2 ∈ (a, b) and 0 ≤ λ ≤ 1,

f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2). (2.47)

A function f is strictly convex! if, for all x1, x2 ∈ (a, b), the equality
holds only for λ = 0 and λ = 1.

Similar definitions apply to concave# and strictly concave# functions.

Some strictly convex! functions are

• x2, ex and e−x for all x;

• log(1/x) and x log x for x > 0.

x2

-1 0 1 2 3

e−x

-1 0 1 2 3

log 1
x

0 1 2 3

x log x

0 1 2 3

Figure 2.11. Convex! functions.

Jensen’s inequality. If f is a convex! function and x is a random variable
then:

E [f(x)] ≥ f(E [x]) , (2.48)

where E denotes expectation. If f is strictly convex! and E [f(x)] =
f(E [x]), then the random variable x is a constant.

Jensen’s inequality can also be rewritten for a concave# function, with
the direction of the inequality reversed.

A physical version of Jensen’s inequality runs as follows.

Centre of gravity

If a collection of masses pi are placed on a convex! curve f(x)
at locations (xi, f(xi)), then the centre of gravity of those masses,
which is at (E [x], E [f(x)]), lies above the curve.

If this fails to convince you, then feel free to do the following exercise.

Exercise 2.14.[2, p.41] Prove Jensen’s inequality.

Example 2.15. Three squares have average area Ā = 100m2. The average of
the lengths of their sides is l̄ = 10m. What can be said about the size
of the largest of the three squares? [Use Jensen’s inequality.]

Solution. Let x be the length of the side of a square, and let the probability
of x be 1/3, 1/3, 1/3 over the three lengths l1, l2, l3. Then the information that
we have is that E [x] = 10 and E [f(x)] = 100, where f(x) = x2 is the function
mapping lengths to areas. This is a strictly convex! function. We notice
that the equality E [f(x)] = f(E [x]) holds, therefore x is a constant, and the
three lengths must all be equal. The area of the largest square is 100m2. !

Similar definitions apply to concave ⌢ and 
strictly concave ⌢ functions. 
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Examples of convex functions 
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Jensen’s inequality. If f is a convex! function and x is a random variable
then:

E [f(x)] ≥ f(E [x]) , (2.48)

where E denotes expectation. If f is strictly convex! and E [f(x)] =
f(E [x]), then the random variable x is a constant.

Jensen’s inequality can also be rewritten for a concave# function, with
the direction of the inequality reversed.

A physical version of Jensen’s inequality runs as follows.

Centre of gravity

If a collection of masses pi are placed on a convex! curve f(x)
at locations (xi, f(xi)), then the centre of gravity of those masses,
which is at (E [x], E [f(x)]), lies above the curve.

If this fails to convince you, then feel free to do the following exercise.
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the lengths of their sides is l̄ = 10m. What can be said about the size
of the largest of the three squares? [Use Jensen’s inequality.]
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of x be 1/3, 1/3, 1/3 over the three lengths l1, l2, l3. Then the information that
we have is that E [x] = 10 and E [f(x)] = 100, where f(x) = x2 is the function
mapping lengths to areas. This is a strictly convex! function. We notice
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Jensen’s inequality. If f is a convex! function and x is a random variable
then:

E [f(x)] ≥ f(E [x]) , (2.48)

where E denotes expectation. If f is strictly convex! and E [f(x)] =
f(E [x]), then the random variable x is a constant.

Jensen’s inequality can also be rewritten for a concave# function, with
the direction of the inequality reversed.

A physical version of Jensen’s inequality runs as follows.

Centre of gravity

If a collection of masses pi are placed on a convex! curve f(x)
at locations (xi, f(xi)), then the centre of gravity of those masses,
which is at (E [x], E [f(x)]), lies above the curve.

If this fails to convince you, then feel free to do the following exercise.

Exercise 2.14.[2, p.41] Prove Jensen’s inequality.

Example 2.15. Three squares have average area Ā = 100m2. The average of
the lengths of their sides is l̄ = 10m. What can be said about the size
of the largest of the three squares? [Use Jensen’s inequality.]

Solution. Let x be the length of the side of a square, and let the probability
of x be 1/3, 1/3, 1/3 over the three lengths l1, l2, l3. Then the information that
we have is that E [x] = 10 and E [f(x)] = 100, where f(x) = x2 is the function
mapping lengths to areas. This is a strictly convex! function. We notice
that the equality E [f(x)] = f(E [x]) holds, therefore x is a constant, and the
three lengths must all be equal. The area of the largest square is 100m2. !
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2.7 Jensen’s inequality for convex functions

The words ‘convex!’ and ‘concave"’ may be pronounced ‘convex-smile’ and
‘concave-frown’. This terminology has useful redundancy: while one may forget
which way up ‘convex’ and ‘concave’ are, it is harder to confuse a smile with a
frown.

Convex! functions. A function f(x) is convex! over (a, b) if every chord
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Figure 2.10. Definition of
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of the function lies above the function, as shown in figure 2.10; that is,
for all x1, x2 ∈ (a, b) and 0 ≤ λ ≤ 1,

f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2). (2.47)

A function f is strictly convex! if, for all x1, x2 ∈ (a, b), the equality
holds only for λ = 0 and λ = 1.

Similar definitions apply to concave# and strictly concave# functions.
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f(E [x]), then the random variable x is a constant.

Jensen’s inequality can also be rewritten for a concave# function, with
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A physical version of Jensen’s inequality runs as follows.
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If a collection of masses pi are placed on a convex! curve f(x)
at locations (xi, f(xi)), then the centre of gravity of those masses,
which is at (E [x], E [f(x)]), lies above the curve.
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we have is that E [x] = 10 and E [f(x)] = 100, where f(x) = x2 is the function
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that the equality E [f(x)] = f(E [x]) holds, therefore x is a constant, and the
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Jensen’s inequality. If f is a convex! function and x is a random variable
then:

E [f(x)] ≥ f(E [x]) , (2.48)

where E denotes expectation. If f is strictly convex! and E [f(x)] =
f(E [x]), then the random variable x is a constant.

Jensen’s inequality can also be rewritten for a concave# function, with
the direction of the inequality reversed.

A physical version of Jensen’s inequality runs as follows.

Centre of gravity

If a collection of masses pi are placed on a convex! curve f(x)
at locations (xi, f(xi)), then the centre of gravity of those masses,
which is at (E [x], E [f(x)]), lies above the curve.

If this fails to convince you, then feel free to do the following exercise.

Exercise 2.14.[2, p.41] Prove Jensen’s inequality.

Example 2.15. Three squares have average area Ā = 100m2. The average of
the lengths of their sides is l̄ = 10m. What can be said about the size
of the largest of the three squares? [Use Jensen’s inequality.]

Solution. Let x be the length of the side of a square, and let the probability
of x be 1/3, 1/3, 1/3 over the three lengths l1, l2, l3. Then the information that
we have is that E [x] = 10 and E [f(x)] = 100, where f(x) = x2 is the function
mapping lengths to areas. This is a strictly convex! function. We notice
that the equality E [f(x)] = f(E [x]) holds, therefore x is a constant, and the
three lengths must all be equal. The area of the largest square is 100m2. !



Entropy and related functions -

! Jensen’s inequality. If f is a convex ⌣ function and x is a random variable then

! If f is strictly convex⌣ and                                    then the random variable x is a constant.

! A Jensen’s inequality can also be rewritten for a concave ⌢ function, with the direction of the 

inequality reversed.

Jensen’s inequality

24

ε f (x)[ ]≥ f (ε x[ ])

ε f (x)[ ]= f (ε x[ ])



Entropy and related functions - 

Information Theory

Designing informative experiments

25



Entropy and related functions -

The weighting problem

! You are given 12 balls, all equal in weight except for one that is either heavier or 

lighter. 

! A two-pan balance to use. In each use of the balance you may put any number of 

the 12 balls on the left pan, and the same number on the right pan. 

! Design a strategy to determine which is the odd ball and whether it is heavier or 

lighter than the others in as few uses of the balance as possible.

26

there are three possible outcomes:  

- the weights are equal,  

- the balls on the left are heavier, 

- the balls on the left are lighter 



Entropy and related functions -

The weighting problem and the measure of information

! Consider the following questions:  

" How can one measure information?  

" When you have identified the odd ball and whether it is heavy or light, how much 

information have you gained?  

" Once you have designed a strategy, draw a tree showing, for each of the possible 

outcomes of a weighing, what weighing you perform next. At each node in the tree, how 

much information have the outcomes so far given you, and how much information 

remains to be gained? 

27



Entropy and related functions -

The weighting problem and the measure of information

! Consider the following questions (cont):  

" How much information is gained when you learn 

− the state of a flipped coin;  

− the states of two flipped coins;  

− the outcome when a four-sided die is rolled?  

" How much information is gained on the first step of the weighing problem if 6 balls 

are weighed against the other 6?  

" How much is gained if 4 are weighed against 4 on the first step, leaving out 4 balls? 

28



Entropy and related functions -

The weighting problem: design a strategy

! What do you propose?

! Lets try to better understand the problem

" What are the possible scenarios?

− The odd ball is the ball n and is heavier or is lighter.

− Let’s say that AX = {1+, 2+, …, 12+, 1-, 2-, …, 12- }

− | AX | = 24 

! Lets try to better understand the available tool

" left heavier: the odd ball is heavier and is on the left or the odd ball is lighter and is on the right 

" right heavier: the odd ball is lighter and is on the left or the odd ball is heavier and is on the right

" balanced: the odd ball was not not the balance ! The ball is one not used in this measure

29

And all are equally probable



Entropy and related functions -

The weighting problem: design a strategy

30
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4.1: How to measure the information content of a random variable? 69

Figure 4.2. An optimal solution to the weighing problem. At each step there are two boxes: the left
box shows which hypotheses are still possible; the right box shows the balls involved in the
next weighing. The 24 hypotheses are written 1+, . . . , 12−, with, e.g., 1+ denoting that
1 is the odd ball and it is heavy. Weighings are written by listing the names of the balls
on the two pans, separated by a line; for example, in the first weighing, balls 1, 2, 3, and
4 are put on the left-hand side and 5, 6, 7, and 8 on the right. In each triplet of arrows
the upper arrow leads to the situation when the left side is heavier, the middle arrow to
the situation when the right side is heavier, and the lower arrow to the situation when the
outcome is balanced. The three points labelled ! correspond to impossible outcomes.
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Figure 4.2. An optimal solution to the weighing problem. At each step there are two boxes: the left
box shows which hypotheses are still possible; the right box shows the balls involved in the
next weighing. The 24 hypotheses are written 1+, . . . , 12−, with, e.g., 1+ denoting that
1 is the odd ball and it is heavy. Weighings are written by listing the names of the balls
on the two pans, separated by a line; for example, in the first weighing, balls 1, 2, 3, and
4 are put on the left-hand side and 5, 6, 7, and 8 on the right. In each triplet of arrows
the upper arrow leads to the situation when the left side is heavier, the middle arrow to
the situation when the right side is heavier, and the lower arrow to the situation when the
outcome is balanced. The three points labelled ! correspond to impossible outcomes.
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Figure 4.2. An optimal solution to the weighing problem. At each step there are two boxes: the left
box shows which hypotheses are still possible; the right box shows the balls involved in the
next weighing. The 24 hypotheses are written 1+, . . . , 12−, with, e.g., 1+ denoting that
1 is the odd ball and it is heavy. Weighings are written by listing the names of the balls
on the two pans, separated by a line; for example, in the first weighing, balls 1, 2, 3, and
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1+

2+

3+

4+

5+

6+

7+

8+

9+

10+

11+

12+

1−
2−
3−
4−
5−
6−
7−
8−
9−
10−
11−
12−

1 2 3 4
5 6 7 8

weigh

!
!
!
!
!
!
!
!
!
!
!
!
!
!!"

#
#
#
#
#
#
#
#
#
#
#
#
#
##$

%

1+

2+

3+

4+

5−
6−
7−
8−

1 2 6
3 4 5

weigh

1−
2−
3−
4−
5+

6+

7+

8+

1 2 6
3 4 5

weigh

9+

10+

11+

12+

9−
10−
11−
12−

9 10 11
1 2 3

weigh

&
&
&
&
&'

(
(
(
(
()

%

&
&
&
&
&'

(
(
(
(
()

%

&
&
&
&
&'

(
(
(
(
()

%

1+2+5− 1
2

3+4+6− 3
4

7−8− 1
7

6+3−4− 3
4

1−2−5+ 1
2

7+8+ 7
1

9+10+11+ 9
10

9−10−11− 9
10

12+12− 12
1

**+

,,-

%

**+

,,-

%

**+

,,-

%

**+

,,-

%

**+

,,-

%

**+

,,-

%

**+

,,-

%

**+

,,-

%

**+

,,-

%

1+

2+

5−

3+

4+

6−

7−

8−

!

4−

3−

6+

2−

1−

5+

7+

8+

!

9+

10+

11+

10−

9−

11−

12+

12−

!

Not used 
9 10 11 12



Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

4.1: How to measure the information content of a random variable? 69

Figure 4.2. An optimal solution to the weighing problem. At each step there are two boxes: the left
box shows which hypotheses are still possible; the right box shows the balls involved in the
next weighing. The 24 hypotheses are written 1+, . . . , 12−, with, e.g., 1+ denoting that
1 is the odd ball and it is heavy. Weighings are written by listing the names of the balls
on the two pans, separated by a line; for example, in the first weighing, balls 1, 2, 3, and
4 are put on the left-hand side and 5, 6, 7, and 8 on the right. In each triplet of arrows
the upper arrow leads to the situation when the left side is heavier, the middle arrow to
the situation when the right side is heavier, and the lower arrow to the situation when the
outcome is balanced. The three points labelled ! correspond to impossible outcomes.
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Figure 4.2. An optimal solution to the weighing problem. At each step there are two boxes: the left
box shows which hypotheses are still possible; the right box shows the balls involved in the
next weighing. The 24 hypotheses are written 1+, . . . , 12−, with, e.g., 1+ denoting that
1 is the odd ball and it is heavy. Weighings are written by listing the names of the balls
on the two pans, separated by a line; for example, in the first weighing, balls 1, 2, 3, and
4 are put on the left-hand side and 5, 6, 7, and 8 on the right. In each triplet of arrows
the upper arrow leads to the situation when the left side is heavier, the middle arrow to
the situation when the right side is heavier, and the lower arrow to the situation when the
outcome is balanced. The three points labelled ! correspond to impossible outcomes.
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Figure 4.2. An optimal solution to the weighing problem. At each step there are two boxes: the left
box shows which hypotheses are still possible; the right box shows the balls involved in the
next weighing. The 24 hypotheses are written 1+, . . . , 12−, with, e.g., 1+ denoting that
1 is the odd ball and it is heavy. Weighings are written by listing the names of the balls
on the two pans, separated by a line; for example, in the first weighing, balls 1, 2, 3, and
4 are put on the left-hand side and 5, 6, 7, and 8 on the right. In each triplet of arrows
the upper arrow leads to the situation when the left side is heavier, the middle arrow to
the situation when the right side is heavier, and the lower arrow to the situation when the
outcome is balanced. The three points labelled ! correspond to impossible outcomes.
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Figure 4.2. An optimal solution to the weighing problem. At each step there are two boxes: the left
box shows which hypotheses are still possible; the right box shows the balls involved in the
next weighing. The 24 hypotheses are written 1+, . . . , 12−, with, e.g., 1+ denoting that
1 is the odd ball and it is heavy. Weighings are written by listing the names of the balls
on the two pans, separated by a line; for example, in the first weighing, balls 1, 2, 3, and
4 are put on the left-hand side and 5, 6, 7, and 8 on the right. In each triplet of arrows
the upper arrow leads to the situation when the left side is heavier, the middle arrow to
the situation when the right side is heavier, and the lower arrow to the situation when the
outcome is balanced. The three points labelled ! correspond to impossible outcomes.
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Figure 4.2. An optimal solution to the weighing problem. At each step there are two boxes: the left
box shows which hypotheses are still possible; the right box shows the balls involved in the
next weighing. The 24 hypotheses are written 1+, . . . , 12−, with, e.g., 1+ denoting that
1 is the odd ball and it is heavy. Weighings are written by listing the names of the balls
on the two pans, separated by a line; for example, in the first weighing, balls 1, 2, 3, and
4 are put on the left-hand side and 5, 6, 7, and 8 on the right. In each triplet of arrows
the upper arrow leads to the situation when the left side is heavier, the middle arrow to
the situation when the right side is heavier, and the lower arrow to the situation when the
outcome is balanced. The three points labelled ! correspond to impossible outcomes.
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Figure 4.2. An optimal solution to the weighing problem. At each step there are two boxes: the left
box shows which hypotheses are still possible; the right box shows the balls involved in the
next weighing. The 24 hypotheses are written 1+, . . . , 12−, with, e.g., 1+ denoting that
1 is the odd ball and it is heavy. Weighings are written by listing the names of the balls
on the two pans, separated by a line; for example, in the first weighing, balls 1, 2, 3, and
4 are put on the left-hand side and 5, 6, 7, and 8 on the right. In each triplet of arrows
the upper arrow leads to the situation when the left side is heavier, the middle arrow to
the situation when the right side is heavier, and the lower arrow to the situation when the
outcome is balanced. The three points labelled ! correspond to impossible outcomes.
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Figure 4.2. An optimal solution to the weighing problem. At each step there are two boxes: the left
box shows which hypotheses are still possible; the right box shows the balls involved in the
next weighing. The 24 hypotheses are written 1+, . . . , 12−, with, e.g., 1+ denoting that
1 is the odd ball and it is heavy. Weighings are written by listing the names of the balls
on the two pans, separated by a line; for example, in the first weighing, balls 1, 2, 3, and
4 are put on the left-hand side and 5, 6, 7, and 8 on the right. In each triplet of arrows
the upper arrow leads to the situation when the left side is heavier, the middle arrow to
the situation when the right side is heavier, and the lower arrow to the situation when the
outcome is balanced. The three points labelled ! correspond to impossible outcomes.
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Figure 4.2. An optimal solution to the weighing problem. At each step there are two boxes: the left
box shows which hypotheses are still possible; the right box shows the balls involved in the
next weighing. The 24 hypotheses are written 1+, . . . , 12−, with, e.g., 1+ denoting that
1 is the odd ball and it is heavy. Weighings are written by listing the names of the balls
on the two pans, separated by a line; for example, in the first weighing, balls 1, 2, 3, and
4 are put on the left-hand side and 5, 6, 7, and 8 on the right. In each triplet of arrows
the upper arrow leads to the situation when the left side is heavier, the middle arrow to
the situation when the right side is heavier, and the lower arrow to the situation when the
outcome is balanced. The three points labelled ! correspond to impossible outcomes.
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Entropy and related functions -

The weighting problem: some maths

! In the three uses of the balance – which reads either ‘left heavier’, ‘right heavier’, or 

‘balanced’ – the number of conceivable outcomes is 33 = 27, 

! The number of possible states of the world is 24: the odd ball could be any of twelve balls, 

and it could be heavy or light 

! So in principle, the problem might be solvable in three weighings

" but not in two, since 32 < 24. 

" Why the strategy was optimal? What is it about your series of weighings that allows useful 

information to be gained as quickly as possible? 

" At each step of an optimal procedure, the three outcomes (‘left heavier’, ‘right heavier’, and 

‘balance’) are as close as possible to equiprobable.
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The weighting problem: some maths

! In the three uses of the balance – which reads either ‘left heavier’, ‘right heavier’, or 

‘balanced’ – the number of conceivable outcomes is 33 = 27, 

! The number of possible states of the world is 24: 

! At each step of an optimal procedure, the three outcomes (‘left heavier’, ‘right heavier’, and 

‘balance’) are as close as possible to equiprobable.

! Strategies, such as weighing balls 1–6 against 7–12 on the first step, do not achieve all outcomes with 

equal probability: these two sets of balls can never balance, so the only possible outcomes are ‘left 

heavy’ and ‘right heavy’. 

" Such a binary outcome rules out only half of the possible hypotheses, so a strategy that uses such 

outcomes must sometimes take longer to find the right answer.
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Entropy and related functions -

The weighting problem: some maths

! In the three uses of the balance – which reads either ‘left heavier’, ‘right heavier’, or 

‘balanced’ – the number of conceivable outcomes is 33 = 27, 

! The number of possible states of the world is 24: 

! At each step of an optimal procedure, the three outcomes (‘left heavier’, ‘right heavier’, and 

‘balance’) are as close as possible to equiprobable.

! An optimal strategy:

" The first weighing must divide the 24 possible hypotheses into three groups of eight. 

" Then the second weighing must be chosen so that there is a 3:3:2 split of the hypotheses. 
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70 4 — The Source Coding Theorem

so a strategy that uses such outcomes must sometimes take longer to find the
right answer.

The insight that the outcomes should be as near as possible to equiprobable
makes it easier to search for an optimal strategy. The first weighing must
divide the 24 possible hypotheses into three groups of eight. Then the second
weighing must be chosen so that there is a 3:3:2 split of the hypotheses.

Thus we might conclude:

the outcome of a random experiment is guaranteed to be most in-
formative if the probability distribution over outcomes is uniform.

This conclusion agrees with the property of the entropy that you proved
when you solved exercise 2.25 (p.37): the entropy of an ensemble X is biggest
if all the outcomes have equal probability pi =1/|AX |.

Guessing games

In the game of twenty questions, one player thinks of an object, and the
other player attempts to guess what the object is by asking questions that
have yes/no answers, for example, ‘is it alive?’, or ‘is it human?’ The aim
is to identify the object with as few questions as possible. What is the best
strategy for playing this game? For simplicity, imagine that we are playing
the rather dull version of twenty questions called ‘sixty-three’.

Example 4.3. The game ‘sixty-three’. What’s the smallest number of yes/no
questions needed to identify an integer x between 0 and 63?

Intuitively, the best questions successively divide the 64 possibilities into equal
sized sets. Six questions suffice. One reasonable strategy asks the following
questions:

1: is x ≥ 32?
2: is xmod32 ≥ 16?
3: is xmod16 ≥ 8?
4: is xmod8 ≥ 4?
5: is xmod4 ≥ 2?
6: is xmod2 = 1?

[The notation xmod32, pronounced ‘x modulo 32’, denotes the remainder
when x is divided by 32; for example, 35mod 32 = 3 and 32mod 32 = 0.]

The answers to these questions, if translated from {yes,no} to {1, 0}, give
the binary expansion of x, for example 35 ⇒ 100011. !

What are the Shannon information contents of the outcomes in this ex-
ample? If we assume that all values of x are equally likely, then the answers
to the questions are independent and each has Shannon information content
log2(1/0.5) = 1bit; the total Shannon information gained is always six bits.
Furthermore, the number x that we learn from these questions is a six-bit bi-
nary number. Our questioning strategy defines a way of encoding the random
variable x as a binary file.

So far, the Shannon information content makes sense: it measures the
length of a binary file that encodes x. However, we have not yet studied
ensembles where the outcomes have unequal probabilities. Does the Shannon
information content make sense there too?



Entropy and related functions -

! The Shannon information content of an outcome x is defined to be

! It is measured in bits 

! The word bit is is also used to denote a variable whose value is 0 or 1 (binary digit)

! h(ai) is indeed a natural measure of the information content of the event x = ai. 

! When ai is almost certain (P(ai) near to 1) 

the occurrence of a has a small information content

! When ai is very unlikely (P(ai) near to 0) 

the occurrence of a has a large information content

The Shannon information content of an outcome 
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h(x) = log2
1

P(x)
= − log2 P(x)

P(x)

h(x)



Entropy and related functions -

! The entropy of an ensemble X is defined to be the average Shannon information content of 

an outcome: 

! H(X) ≥ 0

! H(X) = 0 if and only if pi = 1 for one i.

! Entropy is maximized if p is uniform

!                                  if and only if                   for all i

! Binary case, H2(X)

Entropy of an ensemble X 
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H (x) = P(x)
x∈AX
∑ log2

1
P(x)

= − P(x)
x∈AX
∑ log2 P(x)

H (X) ≤ log AX( )
H (X) = log AX( ) pi =

1
AX

p

H2(X)



Entropy and related functions -

! Guess a hidden number between 0 and 63 with a serie of questions that have an answer 

yes/no. How many questions are necessary to ensure that we discover the number?

! Intuitively, the best questions successively divide the 64 possibilities into equal sized sets.

! Six questions suffice: 26 = 64

! Assuming that all values of x are equally likely, then the answers to the questions are 

independent and each has Shannon information content log2(1/0.5) = 1bit

Guessing Games 
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so a strategy that uses such outcomes must sometimes take longer to find the
right answer.

The insight that the outcomes should be as near as possible to equiprobable
makes it easier to search for an optimal strategy. The first weighing must
divide the 24 possible hypotheses into three groups of eight. Then the second
weighing must be chosen so that there is a 3:3:2 split of the hypotheses.

Thus we might conclude:

the outcome of a random experiment is guaranteed to be most in-
formative if the probability distribution over outcomes is uniform.

This conclusion agrees with the property of the entropy that you proved
when you solved exercise 2.25 (p.37): the entropy of an ensemble X is biggest
if all the outcomes have equal probability pi =1/|AX |.

Guessing games

In the game of twenty questions, one player thinks of an object, and the
other player attempts to guess what the object is by asking questions that
have yes/no answers, for example, ‘is it alive?’, or ‘is it human?’ The aim
is to identify the object with as few questions as possible. What is the best
strategy for playing this game? For simplicity, imagine that we are playing
the rather dull version of twenty questions called ‘sixty-three’.

Example 4.3. The game ‘sixty-three’. What’s the smallest number of yes/no
questions needed to identify an integer x between 0 and 63?

Intuitively, the best questions successively divide the 64 possibilities into equal
sized sets. Six questions suffice. One reasonable strategy asks the following
questions:

1: is x ≥ 32?
2: is xmod32 ≥ 16?
3: is xmod16 ≥ 8?
4: is xmod8 ≥ 4?
5: is xmod4 ≥ 2?
6: is xmod2 = 1?

[The notation xmod32, pronounced ‘x modulo 32’, denotes the remainder
when x is divided by 32; for example, 35mod 32 = 3 and 32mod 32 = 0.]

The answers to these questions, if translated from {yes,no} to {1, 0}, give
the binary expansion of x, for example 35 ⇒ 100011. !

What are the Shannon information contents of the outcomes in this ex-
ample? If we assume that all values of x are equally likely, then the answers
to the questions are independent and each has Shannon information content
log2(1/0.5) = 1bit; the total Shannon information gained is always six bits.
Furthermore, the number x that we learn from these questions is a six-bit bi-
nary number. Our questioning strategy defines a way of encoding the random
variable x as a binary file.

So far, the Shannon information content makes sense: it measures the
length of a binary file that encodes x. However, we have not yet studied
ensembles where the outcomes have unequal probabilities. Does the Shannon
information content make sense there too?



Entropy and related functions -

! In a simplified version of battleships called submarine, each player hides just one submarine in one 

square of an eight-by-eight grid.

! The circle represents the square that is being fired at,

! The X show the squares in which the outcome was a miss, x = n; 

! The submarine is hit (outcome x = y shown by the symbol s)

The game of submarine: how many bits can one bit convey? 
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Figure 4.3. A game of submarine.
The submarine is hit on the 49th
attempt.

The game of submarine: how many bits can one bit convey?

In the game of battleships, each player hides a fleet of ships in a sea represented
by a square grid. On each turn, one player attempts to hit the other’s ships by
firing at one square in the opponent’s sea. The response to a selected square
such as ‘G3’ is either ‘miss’, ‘hit’, or ‘hit and destroyed’.

In a boring version of battleships called submarine, each player hides just
one submarine in one square of an eight-by-eight grid. Figure 4.3 shows a few
pictures of this game in progress: the circle represents the square that is being
fired at, and the ×s show squares in which the outcome was a miss, x = n; the
submarine is hit (outcome x = y shown by the symbol s) on the 49th attempt.

Each shot made by a player defines an ensemble. The two possible out-
comes are {y, n}, corresponding to a hit and a miss, and their probabili-
ties depend on the state of the board. At the beginning, P (y) = 1/64 and
P (n) = 63/64. At the second shot, if the first shot missed, P (y) = 1/63 and
P (n) = 62/63. At the third shot, if the first two shots missed, P (y) = 1/62
and P (n) = 61/62.

The Shannon information gained from an outcome x is h(x) = log(1/P (x)).
If we are lucky, and hit the submarine on the first shot, then

h(x) = h(1)(y) = log2 64 = 6bits. (4.8)

Now, it might seem a little strange that one binary outcome can convey six
bits. But we have learnt the hiding place, which could have been any of 64
squares; so we have, by one lucky binary question, indeed learnt six bits.

What if the first shot misses? The Shannon information that we gain from
this outcome is

h(x) = h(1)(n) = log2
64
63

= 0.0227 bits. (4.9)

Does this make sense? It is not so obvious. Let’s keep going. If our second
shot also misses, the Shannon information content of the second outcome is

h(2)(n) = log2
63
62

= 0.0230 bits. (4.10)

If we miss thirty-two times (firing at a new square each time), the total Shan-
non information gained is

log2
64
63

+ log2
63
62

+ · · · + log2
33
32

= 0.0227 + 0.0230 + · · · + 0.0430 = 1.0 bits. (4.11)



Entropy and related functions -

! Each shot made by a player defines an ensemble. 

! The two possible outcomes are {y, n}. 

! Their probabilities depend on the state of the board.

The game of submarine: how many bits can one bit convey? 
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The submarine is hit on the 49th
attempt.

The game of submarine: how many bits can one bit convey?

In the game of battleships, each player hides a fleet of ships in a sea represented
by a square grid. On each turn, one player attempts to hit the other’s ships by
firing at one square in the opponent’s sea. The response to a selected square
such as ‘G3’ is either ‘miss’, ‘hit’, or ‘hit and destroyed’.

In a boring version of battleships called submarine, each player hides just
one submarine in one square of an eight-by-eight grid. Figure 4.3 shows a few
pictures of this game in progress: the circle represents the square that is being
fired at, and the ×s show squares in which the outcome was a miss, x = n; the
submarine is hit (outcome x = y shown by the symbol s) on the 49th attempt.

Each shot made by a player defines an ensemble. The two possible out-
comes are {y, n}, corresponding to a hit and a miss, and their probabili-
ties depend on the state of the board. At the beginning, P (y) = 1/64 and
P (n) = 63/64. At the second shot, if the first shot missed, P (y) = 1/63 and
P (n) = 62/63. At the third shot, if the first two shots missed, P (y) = 1/62
and P (n) = 61/62.

The Shannon information gained from an outcome x is h(x) = log(1/P (x)).
If we are lucky, and hit the submarine on the first shot, then

h(x) = h(1)(y) = log2 64 = 6bits. (4.8)

Now, it might seem a little strange that one binary outcome can convey six
bits. But we have learnt the hiding place, which could have been any of 64
squares; so we have, by one lucky binary question, indeed learnt six bits.

What if the first shot misses? The Shannon information that we gain from
this outcome is

h(x) = h(1)(n) = log2
64
63

= 0.0227 bits. (4.9)

Does this make sense? It is not so obvious. Let’s keep going. If our second
shot also misses, the Shannon information content of the second outcome is

h(2)(n) = log2
63
62

= 0.0230 bits. (4.10)

If we miss thirty-two times (firing at a new square each time), the total Shan-
non information gained is

log2
64
63

+ log2
63
62

+ · · · + log2
33
32

= 0.0227 + 0.0230 + · · · + 0.0430 = 1.0 bits. (4.11)



Entropy and related functions -

! Each shot made by a player defines an ensemble. 

! The two possible outcomes are {y, n}. 

! Their probabilities depend on the state of the board.

! At the beginning, P(y) = 1/64 and P(n) = 63/64.

! At the second shot, if the first shot missed, P(y) = 1/63 and P(n) = 62/63.

The game of submarine: how many bits can one bit convey? 
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Figure 4.3. A game of submarine.
The submarine is hit on the 49th
attempt.

The game of submarine: how many bits can one bit convey?

In the game of battleships, each player hides a fleet of ships in a sea represented
by a square grid. On each turn, one player attempts to hit the other’s ships by
firing at one square in the opponent’s sea. The response to a selected square
such as ‘G3’ is either ‘miss’, ‘hit’, or ‘hit and destroyed’.

In a boring version of battleships called submarine, each player hides just
one submarine in one square of an eight-by-eight grid. Figure 4.3 shows a few
pictures of this game in progress: the circle represents the square that is being
fired at, and the ×s show squares in which the outcome was a miss, x = n; the
submarine is hit (outcome x = y shown by the symbol s) on the 49th attempt.

Each shot made by a player defines an ensemble. The two possible out-
comes are {y, n}, corresponding to a hit and a miss, and their probabili-
ties depend on the state of the board. At the beginning, P (y) = 1/64 and
P (n) = 63/64. At the second shot, if the first shot missed, P (y) = 1/63 and
P (n) = 62/63. At the third shot, if the first two shots missed, P (y) = 1/62
and P (n) = 61/62.

The Shannon information gained from an outcome x is h(x) = log(1/P (x)).
If we are lucky, and hit the submarine on the first shot, then

h(x) = h(1)(y) = log2 64 = 6bits. (4.8)

Now, it might seem a little strange that one binary outcome can convey six
bits. But we have learnt the hiding place, which could have been any of 64
squares; so we have, by one lucky binary question, indeed learnt six bits.

What if the first shot misses? The Shannon information that we gain from
this outcome is

h(x) = h(1)(n) = log2
64
63

= 0.0227 bits. (4.9)

Does this make sense? It is not so obvious. Let’s keep going. If our second
shot also misses, the Shannon information content of the second outcome is

h(2)(n) = log2
63
62

= 0.0230 bits. (4.10)

If we miss thirty-two times (firing at a new square each time), the total Shan-
non information gained is

log2
64
63

+ log2
63
62

+ · · · + log2
33
32

= 0.0227 + 0.0230 + · · · + 0.0430 = 1.0 bits. (4.11)



Entropy and related functions -

! The Shannon information gained from an outcome x is h(x) = log(1/P(x)). 

! If we are lucky, and hit the submarine on the first shot, then 

! If we miss the shot, then

The game of submarine: how many bits can one bit convey? 
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Figure 4.3. A game of submarine.
The submarine is hit on the 49th
attempt.

The game of submarine: how many bits can one bit convey?

In the game of battleships, each player hides a fleet of ships in a sea represented
by a square grid. On each turn, one player attempts to hit the other’s ships by
firing at one square in the opponent’s sea. The response to a selected square
such as ‘G3’ is either ‘miss’, ‘hit’, or ‘hit and destroyed’.

In a boring version of battleships called submarine, each player hides just
one submarine in one square of an eight-by-eight grid. Figure 4.3 shows a few
pictures of this game in progress: the circle represents the square that is being
fired at, and the ×s show squares in which the outcome was a miss, x = n; the
submarine is hit (outcome x = y shown by the symbol s) on the 49th attempt.

Each shot made by a player defines an ensemble. The two possible out-
comes are {y, n}, corresponding to a hit and a miss, and their probabili-
ties depend on the state of the board. At the beginning, P (y) = 1/64 and
P (n) = 63/64. At the second shot, if the first shot missed, P (y) = 1/63 and
P (n) = 62/63. At the third shot, if the first two shots missed, P (y) = 1/62
and P (n) = 61/62.

The Shannon information gained from an outcome x is h(x) = log(1/P (x)).
If we are lucky, and hit the submarine on the first shot, then

h(x) = h(1)(y) = log2 64 = 6bits. (4.8)

Now, it might seem a little strange that one binary outcome can convey six
bits. But we have learnt the hiding place, which could have been any of 64
squares; so we have, by one lucky binary question, indeed learnt six bits.

What if the first shot misses? The Shannon information that we gain from
this outcome is

h(x) = h(1)(n) = log2
64
63

= 0.0227 bits. (4.9)

Does this make sense? It is not so obvious. Let’s keep going. If our second
shot also misses, the Shannon information content of the second outcome is

h(2)(n) = log2
63
62

= 0.0230 bits. (4.10)

If we miss thirty-two times (firing at a new square each time), the total Shan-
non information gained is

log2
64
63

+ log2
63
62

+ · · · + log2
33
32

= 0.0227 + 0.0230 + · · · + 0.0430 = 1.0 bits. (4.11)
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Figure 4.3. A game of submarine.
The submarine is hit on the 49th
attempt.

The game of submarine: how many bits can one bit convey?

In the game of battleships, each player hides a fleet of ships in a sea represented
by a square grid. On each turn, one player attempts to hit the other’s ships by
firing at one square in the opponent’s sea. The response to a selected square
such as ‘G3’ is either ‘miss’, ‘hit’, or ‘hit and destroyed’.

In a boring version of battleships called submarine, each player hides just
one submarine in one square of an eight-by-eight grid. Figure 4.3 shows a few
pictures of this game in progress: the circle represents the square that is being
fired at, and the ×s show squares in which the outcome was a miss, x = n; the
submarine is hit (outcome x = y shown by the symbol s) on the 49th attempt.

Each shot made by a player defines an ensemble. The two possible out-
comes are {y, n}, corresponding to a hit and a miss, and their probabili-
ties depend on the state of the board. At the beginning, P (y) = 1/64 and
P (n) = 63/64. At the second shot, if the first shot missed, P (y) = 1/63 and
P (n) = 62/63. At the third shot, if the first two shots missed, P (y) = 1/62
and P (n) = 61/62.

The Shannon information gained from an outcome x is h(x) = log(1/P (x)).
If we are lucky, and hit the submarine on the first shot, then

h(x) = h(1)(y) = log2 64 = 6bits. (4.8)

Now, it might seem a little strange that one binary outcome can convey six
bits. But we have learnt the hiding place, which could have been any of 64
squares; so we have, by one lucky binary question, indeed learnt six bits.

What if the first shot misses? The Shannon information that we gain from
this outcome is

h(x) = h(1)(n) = log2
64
63

= 0.0227 bits. (4.9)

Does this make sense? It is not so obvious. Let’s keep going. If our second
shot also misses, the Shannon information content of the second outcome is

h(2)(n) = log2
63
62

= 0.0230 bits. (4.10)

If we miss thirty-two times (firing at a new square each time), the total Shan-
non information gained is

log2
64
63

+ log2
63
62

+ · · · + log2
33
32

= 0.0227 + 0.0230 + · · · + 0.0430 = 1.0 bits. (4.11)
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The game of submarine: how many bits can one bit convey?

In the game of battleships, each player hides a fleet of ships in a sea represented
by a square grid. On each turn, one player attempts to hit the other’s ships by
firing at one square in the opponent’s sea. The response to a selected square
such as ‘G3’ is either ‘miss’, ‘hit’, or ‘hit and destroyed’.

In a boring version of battleships called submarine, each player hides just
one submarine in one square of an eight-by-eight grid. Figure 4.3 shows a few
pictures of this game in progress: the circle represents the square that is being
fired at, and the ×s show squares in which the outcome was a miss, x = n; the
submarine is hit (outcome x = y shown by the symbol s) on the 49th attempt.

Each shot made by a player defines an ensemble. The two possible out-
comes are {y, n}, corresponding to a hit and a miss, and their probabili-
ties depend on the state of the board. At the beginning, P (y) = 1/64 and
P (n) = 63/64. At the second shot, if the first shot missed, P (y) = 1/63 and
P (n) = 62/63. At the third shot, if the first two shots missed, P (y) = 1/62
and P (n) = 61/62.

The Shannon information gained from an outcome x is h(x) = log(1/P (x)).
If we are lucky, and hit the submarine on the first shot, then

h(x) = h(1)(y) = log2 64 = 6bits. (4.8)

Now, it might seem a little strange that one binary outcome can convey six
bits. But we have learnt the hiding place, which could have been any of 64
squares; so we have, by one lucky binary question, indeed learnt six bits.

What if the first shot misses? The Shannon information that we gain from
this outcome is

h(x) = h(1)(n) = log2
64
63

= 0.0227 bits. (4.9)

Does this make sense? It is not so obvious. Let’s keep going. If our second
shot also misses, the Shannon information content of the second outcome is

h(2)(n) = log2
63
62

= 0.0230 bits. (4.10)

If we miss thirty-two times (firing at a new square each time), the total Shan-
non information gained is

log2
64
63

+ log2
63
62

+ · · · + log2
33
32

= 0.0227 + 0.0230 + · · · + 0.0430 = 1.0 bits. (4.11)
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The game of submarine: how many bits can one bit convey?

In the game of battleships, each player hides a fleet of ships in a sea represented
by a square grid. On each turn, one player attempts to hit the other’s ships by
firing at one square in the opponent’s sea. The response to a selected square
such as ‘G3’ is either ‘miss’, ‘hit’, or ‘hit and destroyed’.

In a boring version of battleships called submarine, each player hides just
one submarine in one square of an eight-by-eight grid. Figure 4.3 shows a few
pictures of this game in progress: the circle represents the square that is being
fired at, and the ×s show squares in which the outcome was a miss, x = n; the
submarine is hit (outcome x = y shown by the symbol s) on the 49th attempt.

Each shot made by a player defines an ensemble. The two possible out-
comes are {y, n}, corresponding to a hit and a miss, and their probabili-
ties depend on the state of the board. At the beginning, P (y) = 1/64 and
P (n) = 63/64. At the second shot, if the first shot missed, P (y) = 1/63 and
P (n) = 62/63. At the third shot, if the first two shots missed, P (y) = 1/62
and P (n) = 61/62.

The Shannon information gained from an outcome x is h(x) = log(1/P (x)).
If we are lucky, and hit the submarine on the first shot, then

h(x) = h(1)(y) = log2 64 = 6bits. (4.8)

Now, it might seem a little strange that one binary outcome can convey six
bits. But we have learnt the hiding place, which could have been any of 64
squares; so we have, by one lucky binary question, indeed learnt six bits.

What if the first shot misses? The Shannon information that we gain from
this outcome is

h(x) = h(1)(n) = log2
64
63

= 0.0227 bits. (4.9)

Does this make sense? It is not so obvious. Let’s keep going. If our second
shot also misses, the Shannon information content of the second outcome is

h(2)(n) = log2
63
62

= 0.0230 bits. (4.10)

If we miss thirty-two times (firing at a new square each time), the total Shan-
non information gained is
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33
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The game of submarine: how many bits can one bit convey?

In the game of battleships, each player hides a fleet of ships in a sea represented
by a square grid. On each turn, one player attempts to hit the other’s ships by
firing at one square in the opponent’s sea. The response to a selected square
such as ‘G3’ is either ‘miss’, ‘hit’, or ‘hit and destroyed’.

In a boring version of battleships called submarine, each player hides just
one submarine in one square of an eight-by-eight grid. Figure 4.3 shows a few
pictures of this game in progress: the circle represents the square that is being
fired at, and the ×s show squares in which the outcome was a miss, x = n; the
submarine is hit (outcome x = y shown by the symbol s) on the 49th attempt.

Each shot made by a player defines an ensemble. The two possible out-
comes are {y, n}, corresponding to a hit and a miss, and their probabili-
ties depend on the state of the board. At the beginning, P (y) = 1/64 and
P (n) = 63/64. At the second shot, if the first shot missed, P (y) = 1/63 and
P (n) = 62/63. At the third shot, if the first two shots missed, P (y) = 1/62
and P (n) = 61/62.

The Shannon information gained from an outcome x is h(x) = log(1/P (x)).
If we are lucky, and hit the submarine on the first shot, then

h(x) = h(1)(y) = log2 64 = 6bits. (4.8)

Now, it might seem a little strange that one binary outcome can convey six
bits. But we have learnt the hiding place, which could have been any of 64
squares; so we have, by one lucky binary question, indeed learnt six bits.

What if the first shot misses? The Shannon information that we gain from
this outcome is

h(x) = h(1)(n) = log2
64
63

= 0.0227 bits. (4.9)

Does this make sense? It is not so obvious. Let’s keep going. If our second
shot also misses, the Shannon information content of the second outcome is

h(2)(n) = log2
63
62

= 0.0230 bits. (4.10)

If we miss thirty-two times (firing at a new square each time), the total Shan-
non information gained is

log2
64
63

+ log2
63
62

+ · · · + log2
33
32

= 0.0227 + 0.0230 + · · · + 0.0430 = 1.0 bits. (4.11)Why?
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The game of submarine: how many bits can one bit convey?

In the game of battleships, each player hides a fleet of ships in a sea represented
by a square grid. On each turn, one player attempts to hit the other’s ships by
firing at one square in the opponent’s sea. The response to a selected square
such as ‘G3’ is either ‘miss’, ‘hit’, or ‘hit and destroyed’.

In a boring version of battleships called submarine, each player hides just
one submarine in one square of an eight-by-eight grid. Figure 4.3 shows a few
pictures of this game in progress: the circle represents the square that is being
fired at, and the ×s show squares in which the outcome was a miss, x = n; the
submarine is hit (outcome x = y shown by the symbol s) on the 49th attempt.

Each shot made by a player defines an ensemble. The two possible out-
comes are {y, n}, corresponding to a hit and a miss, and their probabili-
ties depend on the state of the board. At the beginning, P (y) = 1/64 and
P (n) = 63/64. At the second shot, if the first shot missed, P (y) = 1/63 and
P (n) = 62/63. At the third shot, if the first two shots missed, P (y) = 1/62
and P (n) = 61/62.

The Shannon information gained from an outcome x is h(x) = log(1/P (x)).
If we are lucky, and hit the submarine on the first shot, then

h(x) = h(1)(y) = log2 64 = 6bits. (4.8)

Now, it might seem a little strange that one binary outcome can convey six
bits. But we have learnt the hiding place, which could have been any of 64
squares; so we have, by one lucky binary question, indeed learnt six bits.

What if the first shot misses? The Shannon information that we gain from
this outcome is

h(x) = h(1)(n) = log2
64
63

= 0.0227 bits. (4.9)

Does this make sense? It is not so obvious. Let’s keep going. If our second
shot also misses, the Shannon information content of the second outcome is

h(2)(n) = log2
63
62

= 0.0230 bits. (4.10)

If we miss thirty-two times (firing at a new square each time), the total Shan-
non information gained is

log2
64
63

+ log2
63
62

+ · · · + log2
33
32

= 0.0227 + 0.0230 + · · · + 0.0430 = 1.0 bits. (4.11)
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The submarine is hit on the 49th
attempt.

The game of submarine: how many bits can one bit convey?

In the game of battleships, each player hides a fleet of ships in a sea represented
by a square grid. On each turn, one player attempts to hit the other’s ships by
firing at one square in the opponent’s sea. The response to a selected square
such as ‘G3’ is either ‘miss’, ‘hit’, or ‘hit and destroyed’.

In a boring version of battleships called submarine, each player hides just
one submarine in one square of an eight-by-eight grid. Figure 4.3 shows a few
pictures of this game in progress: the circle represents the square that is being
fired at, and the ×s show squares in which the outcome was a miss, x = n; the
submarine is hit (outcome x = y shown by the symbol s) on the 49th attempt.

Each shot made by a player defines an ensemble. The two possible out-
comes are {y, n}, corresponding to a hit and a miss, and their probabili-
ties depend on the state of the board. At the beginning, P (y) = 1/64 and
P (n) = 63/64. At the second shot, if the first shot missed, P (y) = 1/63 and
P (n) = 62/63. At the third shot, if the first two shots missed, P (y) = 1/62
and P (n) = 61/62.

The Shannon information gained from an outcome x is h(x) = log(1/P (x)).
If we are lucky, and hit the submarine on the first shot, then

h(x) = h(1)(y) = log2 64 = 6bits. (4.8)

Now, it might seem a little strange that one binary outcome can convey six
bits. But we have learnt the hiding place, which could have been any of 64
squares; so we have, by one lucky binary question, indeed learnt six bits.

What if the first shot misses? The Shannon information that we gain from
this outcome is

h(x) = h(1)(n) = log2
64
63

= 0.0227 bits. (4.9)

Does this make sense? It is not so obvious. Let’s keep going. If our second
shot also misses, the Shannon information content of the second outcome is

h(2)(n) = log2
63
62

= 0.0230 bits. (4.10)

If we miss thirty-two times (firing at a new square each time), the total Shan-
non information gained is

log2
64
63

+ log2
63
62

+ · · · + log2
33
32

= 0.0227 + 0.0230 + · · · + 0.0430 = 1.0 bits. (4.11)

Why?



Entropy and related functions -

! What if we hit the submarine on the 49th shot, when there were 16 squares left? The Shannon 

information content of this outcome is

The game of submarine: how many bits can one bit convey? 

54

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

4.1: How to measure the information content of a random variable? 71

A
B
C
D
E
F
G
H

87654321

×! ×

×!
×

!
××××××××

××××××××

××××××××

×
×
××××

×

×

× ××××××××

××××××××

××××××××

×
×
××××

× ×
×

××××××××

×××××××
!

×

× ××××××××

××××××××

××××××××

×
×
××××

× ×
×

××××××××

×××××××!S
move # 1 2 32 48 49
question G3 B1 E5 F3 H3
outcome x = n x = n x = n x = n x = y

P (x)
63
64

62
63

32
33

16
17

1
16

h(x) 0.0227 0.0230 0.0443 0.0874 4.0
Total info. 0.0227 0.0458 1.0 2.0 6.0

Figure 4.3. A game of submarine.
The submarine is hit on the 49th
attempt.

The game of submarine: how many bits can one bit convey?

In the game of battleships, each player hides a fleet of ships in a sea represented
by a square grid. On each turn, one player attempts to hit the other’s ships by
firing at one square in the opponent’s sea. The response to a selected square
such as ‘G3’ is either ‘miss’, ‘hit’, or ‘hit and destroyed’.

In a boring version of battleships called submarine, each player hides just
one submarine in one square of an eight-by-eight grid. Figure 4.3 shows a few
pictures of this game in progress: the circle represents the square that is being
fired at, and the ×s show squares in which the outcome was a miss, x = n; the
submarine is hit (outcome x = y shown by the symbol s) on the 49th attempt.

Each shot made by a player defines an ensemble. The two possible out-
comes are {y, n}, corresponding to a hit and a miss, and their probabili-
ties depend on the state of the board. At the beginning, P (y) = 1/64 and
P (n) = 63/64. At the second shot, if the first shot missed, P (y) = 1/63 and
P (n) = 62/63. At the third shot, if the first two shots missed, P (y) = 1/62
and P (n) = 61/62.

The Shannon information gained from an outcome x is h(x) = log(1/P (x)).
If we are lucky, and hit the submarine on the first shot, then

h(x) = h(1)(y) = log2 64 = 6bits. (4.8)

Now, it might seem a little strange that one binary outcome can convey six
bits. But we have learnt the hiding place, which could have been any of 64
squares; so we have, by one lucky binary question, indeed learnt six bits.

What if the first shot misses? The Shannon information that we gain from
this outcome is

h(x) = h(1)(n) = log2
64
63

= 0.0227 bits. (4.9)

Does this make sense? It is not so obvious. Let’s keep going. If our second
shot also misses, the Shannon information content of the second outcome is

h(2)(n) = log2
63
62

= 0.0230 bits. (4.10)

If we miss thirty-two times (firing at a new square each time), the total Shan-
non information gained is
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Why this round number? Well, what have we learnt? We now know that the
submarine is not in any of the 32 squares we fired at; learning that fact is just
like playing a game of sixty-three (p.70), asking as our first question ‘is x
one of the thirty-two numbers corresponding to these squares I fired at?’, and
receiving the answer ‘no’. This answer rules out half of the hypotheses, so it
gives us one bit.

After 48 unsuccessful shots, the information gained is 2 bits: the unknown
location has been narrowed down to one quarter of the original hypothesis
space.

What if we hit the submarine on the 49th shot, when there were 16 squares
left? The Shannon information content of this outcome is

h(49)(y) = log2 16 = 4.0 bits. (4.12)

The total Shannon information content of all the outcomes is

log2
64
63

+ log2
63
62

+ · · · + log2
17
16

+ log2
16
1

= 0.0227 + 0.0230 + · · · + 0.0874 + 4.0 = 6.0 bits. (4.13)

So once we know where the submarine is, the total Shannon information con-
tent gained is 6 bits.

This result holds regardless of when we hit the submarine. If we hit it
when there are n squares left to choose from – n was 16 in equation (4.13) –
then the total information gained is:

log2
64
63

+ log2
63
62

+ · · · + log2
n + 1

n
+ log2

n

1

= log2

[
64
63

× 63
62

× · · ·× n + 1
n

× n

1

]
= log2

64
1

= 6bits. (4.14)

What have we learned from the examples so far? I think the submarine
example makes quite a convincing case for the claim that the Shannon infor-
mation content is a sensible measure of information content. And the game of
sixty-three shows that the Shannon information content can be intimately
connected to the size of a file that encodes the outcomes of a random experi-
ment, thus suggesting a possible connection to data compression.

In case you’re not convinced, let’s look at one more example.

The Wenglish language

Wenglish is a language similar to English. Wenglish sentences consist of words
drawn at random from the Wenglish dictionary, which contains 215 = 32,768
words, all of length 5 characters. Each word in the Wenglish dictionary was
constructed at random by picking five letters from the probability distribution
over a. . .z depicted in figure 2.1.

1 aaail
2 aaaiu
3 aaald

...
129 abati

...
2047 azpan
2048 aztdn

...

...
16 384 odrcr

...

...
32 737 zatnt

...
32 768 zxast

Figure 4.4. The Wenglish
dictionary.

Some entries from the dictionary are shown in alphabetical order in fig-
ure 4.4. Notice that the number of words in the dictionary (32,768) is
much smaller than the total number of possible words of length 5 letters,
265 " 12,000,000.

Because the probability of the letter z is about 1/1000, only 32 of the
words in the dictionary begin with the letter z. In contrast, the probability
of the letter a is about 0.0625, and 2048 of the words begin with the letter a.
Of those 2048 words, two start az, and 128 start aa.

Let’s imagine that we are reading a Wenglish document, and let’s discuss
the Shannon information content of the characters as we acquire them. If we
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The game of submarine: how many bits can one bit convey?

In the game of battleships, each player hides a fleet of ships in a sea represented
by a square grid. On each turn, one player attempts to hit the other’s ships by
firing at one square in the opponent’s sea. The response to a selected square
such as ‘G3’ is either ‘miss’, ‘hit’, or ‘hit and destroyed’.

In a boring version of battleships called submarine, each player hides just
one submarine in one square of an eight-by-eight grid. Figure 4.3 shows a few
pictures of this game in progress: the circle represents the square that is being
fired at, and the ×s show squares in which the outcome was a miss, x = n; the
submarine is hit (outcome x = y shown by the symbol s) on the 49th attempt.

Each shot made by a player defines an ensemble. The two possible out-
comes are {y, n}, corresponding to a hit and a miss, and their probabili-
ties depend on the state of the board. At the beginning, P (y) = 1/64 and
P (n) = 63/64. At the second shot, if the first shot missed, P (y) = 1/63 and
P (n) = 62/63. At the third shot, if the first two shots missed, P (y) = 1/62
and P (n) = 61/62.

The Shannon information gained from an outcome x is h(x) = log(1/P (x)).
If we are lucky, and hit the submarine on the first shot, then

h(x) = h(1)(y) = log2 64 = 6bits. (4.8)

Now, it might seem a little strange that one binary outcome can convey six
bits. But we have learnt the hiding place, which could have been any of 64
squares; so we have, by one lucky binary question, indeed learnt six bits.

What if the first shot misses? The Shannon information that we gain from
this outcome is

h(x) = h(1)(n) = log2
64
63

= 0.0227 bits. (4.9)

Does this make sense? It is not so obvious. Let’s keep going. If our second
shot also misses, the Shannon information content of the second outcome is

h(2)(n) = log2
63
62

= 0.0230 bits. (4.10)

If we miss thirty-two times (firing at a new square each time), the total Shan-
non information gained is

log2
64
63

+ log2
63
62

+ · · · + log2
33
32

= 0.0227 + 0.0230 + · · · + 0.0430 = 1.0 bits. (4.11)
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Why this round number? Well, what have we learnt? We now know that the
submarine is not in any of the 32 squares we fired at; learning that fact is just
like playing a game of sixty-three (p.70), asking as our first question ‘is x
one of the thirty-two numbers corresponding to these squares I fired at?’, and
receiving the answer ‘no’. This answer rules out half of the hypotheses, so it
gives us one bit.

After 48 unsuccessful shots, the information gained is 2 bits: the unknown
location has been narrowed down to one quarter of the original hypothesis
space.

What if we hit the submarine on the 49th shot, when there were 16 squares
left? The Shannon information content of this outcome is

h(49)(y) = log2 16 = 4.0 bits. (4.12)

The total Shannon information content of all the outcomes is

log2
64
63

+ log2
63
62

+ · · · + log2
17
16

+ log2
16
1

= 0.0227 + 0.0230 + · · · + 0.0874 + 4.0 = 6.0 bits. (4.13)

So once we know where the submarine is, the total Shannon information con-
tent gained is 6 bits.

This result holds regardless of when we hit the submarine. If we hit it
when there are n squares left to choose from – n was 16 in equation (4.13) –
then the total information gained is:

log2
64
63

+ log2
63
62

+ · · · + log2
n + 1

n
+ log2

n

1

= log2

[
64
63

× 63
62

× · · ·× n + 1
n

× n

1

]
= log2

64
1

= 6bits. (4.14)

What have we learned from the examples so far? I think the submarine
example makes quite a convincing case for the claim that the Shannon infor-
mation content is a sensible measure of information content. And the game of
sixty-three shows that the Shannon information content can be intimately
connected to the size of a file that encodes the outcomes of a random experi-
ment, thus suggesting a possible connection to data compression.

In case you’re not convinced, let’s look at one more example.

The Wenglish language

Wenglish is a language similar to English. Wenglish sentences consist of words
drawn at random from the Wenglish dictionary, which contains 215 = 32,768
words, all of length 5 characters. Each word in the Wenglish dictionary was
constructed at random by picking five letters from the probability distribution
over a. . .z depicted in figure 2.1.

1 aaail
2 aaaiu
3 aaald

...
129 abati

...
2047 azpan
2048 aztdn

...

...
16 384 odrcr

...

...
32 737 zatnt

...
32 768 zxast

Figure 4.4. The Wenglish
dictionary.

Some entries from the dictionary are shown in alphabetical order in fig-
ure 4.4. Notice that the number of words in the dictionary (32,768) is
much smaller than the total number of possible words of length 5 letters,
265 " 12,000,000.

Because the probability of the letter z is about 1/1000, only 32 of the
words in the dictionary begin with the letter z. In contrast, the probability
of the letter a is about 0.0625, and 2048 of the words begin with the letter a.
Of those 2048 words, two start az, and 128 start aa.

Let’s imagine that we are reading a Wenglish document, and let’s discuss
the Shannon information content of the characters as we acquire them. If we
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! Recommend Readings 

" Information Theory, Inference, and Learning Algorithms from David MacKay, 2015, 

pages 32 - 36.
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What you should know
! The definition and the meaning of Shannon information content 

! The diference between Binary Digit and Bit as unit of Shannon information content 

! The definition and the meaning of Entropy 

! Understand the equation 0 ≤ Entropy ≤ log cardinality. In which conditions the 

equalities arise. 

! The joint entropy of two independent ensembles 

! Decomposability of the entropy. How to use 

! The relative Entropy (or Kullback–Leibler divergence) 

! Gibbs’ inequality 

! Jensen’s inequality for convex functions. How to use 

! How to think to Design informative experiments.
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