Computational Ethics for NLP

Information Retrieval and Natural Language Processing

Computational Ethics for NLP

The common misconception is that language has to do with **words** and what they mean.

It doesn't.

It has to do with **people** and what **they** mean.

Herbert H. Clark & Michael F. Schober, 1992

Decisions we make about our data, methods, and tools are tied up with their impact on people and societies.

The Belmont Report Three Basic Ethical Principles

1. Respect for Persons

- Individuals should be treated as autonomous agents
 - "Informed Consent"
- Persons with diminished autonomy are entitled to protection

The Belmont Report Three Basic Ethical Principles

2. Benificence

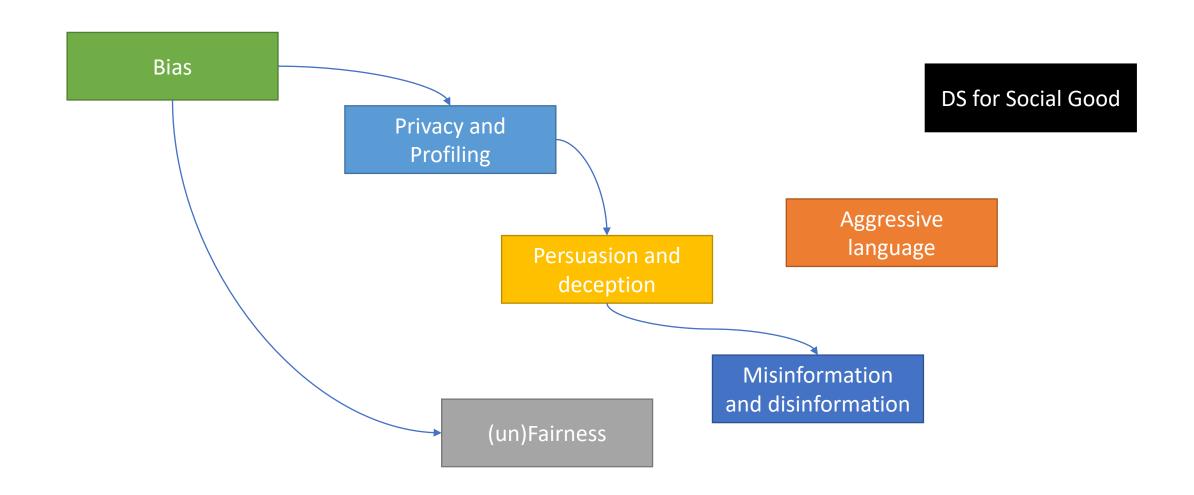
- Do no harm
- Maximize possible benefits and minimize possible harms.

The Belmont Report Three Basic Ethical Principles

3. Justice

- Who ought to receive the benefits of research and bear its burdens?
 - Fair procedures and outcomes in the selection of research subjects
 - Advances should benefit all

Today's lecture



Psychological perspective on cognitive bias

Biases inevitably form because of the innate tendency of the human mind to:

- Categorize the world to simplify processing
- Store learned information in mental representations (called schemas)
- Automatically and unconsciously activate stored information whenever one encounters a category member

Cognitive bias is a systematic pattern of deviation from rationality in judgement

Common biases that affect how we make decisions

- confirmation bias: paying more attention to information that reinforces previously held beliefs and ignoring evidence to the contrary
- ingroup favoritism: when one favors in-group members over outgroup members
- group attribution error: when one generalizes about a group based on a group of representatives
- halo effect: when overall impression of a person impacts evaluation of their specific traits
- just-world hypothesis: when one protects a desire for a just world by blaming the victims

. . . .

Thinking Fast, Thinking Slow



How Do We Make Decisions

System 1 automatic

System 2 effortful

Our brains are evolutionarily hard-wired to store learned information for rapid retrieval and automatic judgments. Over 95% of cognition is relegated to the System 1 "auto-pilot."

How Implicit Bias Manifests?

Micro-inequities

Micro-inequities: ephemeral, covert, unintentional, frequently unrecognized events that reinforce power dynamics or perceptions of "difference"

slights, exclusions, slips of the tongue, nonverbal signals, unchecked assumptions, unequal expectations, etc.

Slide credit: Geoff Kaufman

Microaggressions

"A comment or action that **subtly and often unconsciously or unintentionally** expresses a prejudiced attitude towards a member of a marginalized group"

Merriam Webster

Surface-level sentiment can be negative, neutral, or positive. For example:

- "Girls just aren't good at math."
- "Don't you people like tamales?"
- "You're too pretty to be gay."

Bias in machine learning

- Bias of an estimator
 - the difference between this estimator's expected value and the true value of the parameter being estimated
- Inductive bias
 - assumptions made by the model to learn the target function and to generalize beyond training data

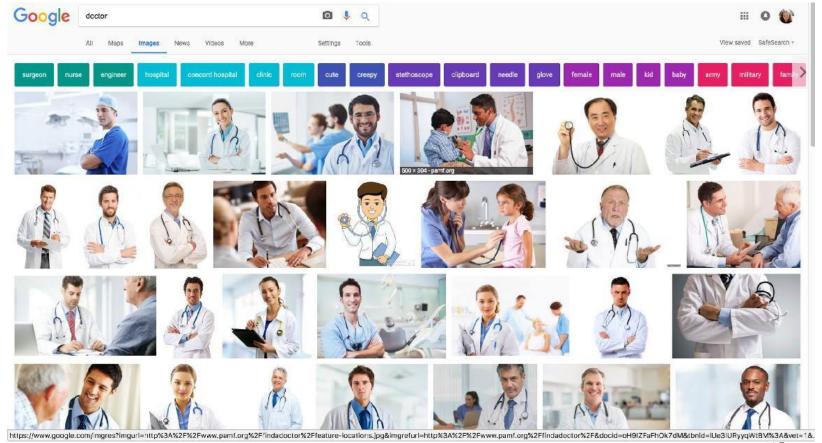
Discussion

• User-generated content represents "real world data".

• Is it wrong to build models replicating real world data?

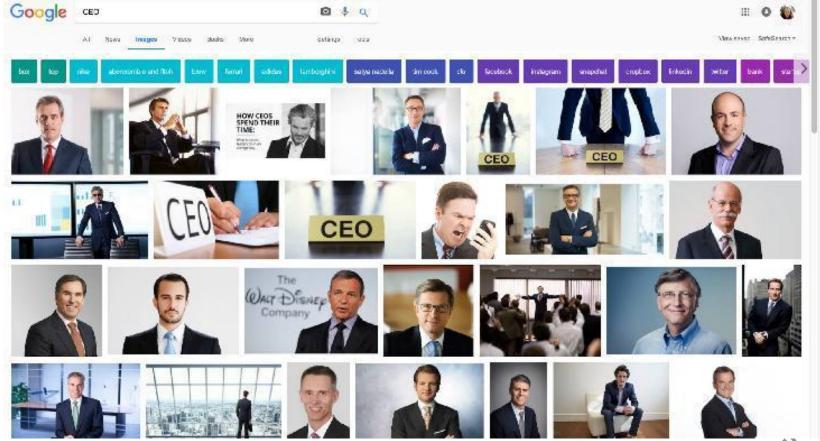
Data biases vs Ethical biases

June 2017: image search query "Doctor"

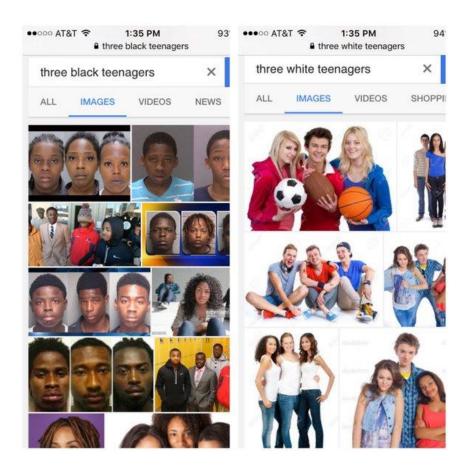


June 2017: image search query "Nurse"

June 2017: image search query "CEO"



June 2016: web search query "three black teenagers"



Privacy and Profiling

Being seen vs being identified

Three aspects of privacy

- Territorial privacy: Public vs private space
- Personal privacy: Being seen vs being watched
- Informational privacy: Being seen vs being watched; Being seen vs being tracked

(Holvast, 1993, Rosenberg, 1992)

Privacy issues arise due to personalization and aggregation of data

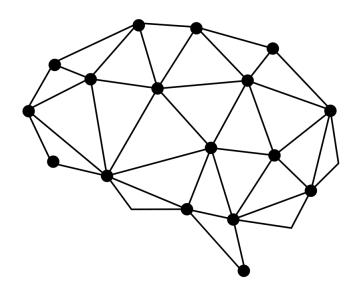
Do People REALLY Care About Protecting Their Privacy?

- Information privacy paradox: privacy attitudes vs privacy behaviors (Kokolakis '17)
 - Surveys of internet users' attitudes show that users are highly concerned about their privacy and the collection and use of their personal information (TRUSTe, 2014, Pew Research Center, 2014)
 - But easily trade their personal data
 - Revealing personal details to a shopping bot (Spiekermann et al. '01)
 - Trading online history for ~7 Euros (Carrascal et al. '13)

Dangers in Misusing Private Information

Examples of scenarios how people can be harmed

- Identity fraud with stolen SSN
- Medical records
- Private vs public accounts on social media: "People You May Know"
- Phone number, call history
- Location history
- Profile pictures across communities and social circles



Cambridge Analytica

What Can We Reveal?

"Facebook Likes, can be used to automatically and accurately predict a range of highly sensitive personal attributes including:

 sexual orientation, ethnicity, religious and political views, personality traits, intelligence, happiness, use of addictive substances, parental separation, age, and gender. "

Kosinski M., Stillwell D., and Graepel T. (2013) Private traits and attributes are predictable from digital records of human behavior. *PNAS*

What Can We Reveal Without User's Data/Language?

David Jurgens, Yulia Tsvetkov, and Dan Jurafsky (2017) Writer Profiling Without the Writer's Text. SocInfo

Data

 Self-identified labels plus heuristics on user names plus aggressive filtering

Attribute	# of Tweets	Majority Class	%
Gender	59800	Male	52.5
Religion	19940	Christian	65.8
Extroversion	24576	Introvert	63.0
Diet	9001	Unrestricted	41.0
Age	38134	21.3 (mean)	5.7 (s.d.)

Table 1. Dataset sizes for each demographic attribute and frequencies of the majority classes.

Results

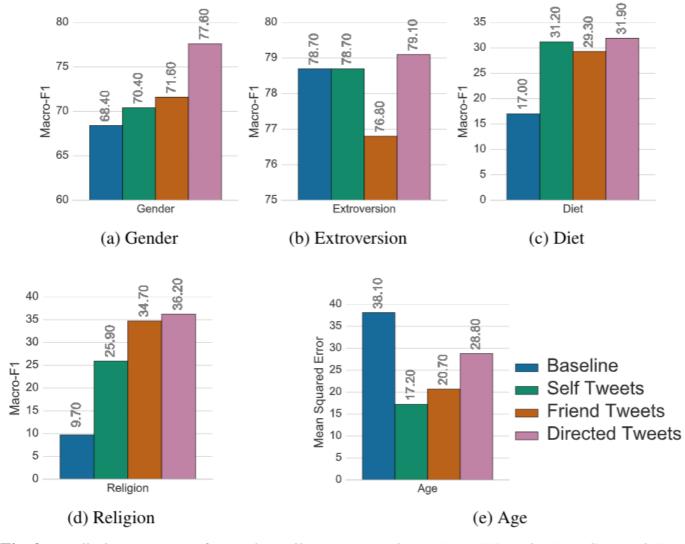


Fig. 2. Predictive accuracy for each attribute, reported as Macro-F1 and Mean Squared Error.

The Dual Use of Profiling Techniques

Twitter's 'firehose' of a half billion tweets a day is incredibly valuable—and just as dangerous.

By Ben Elgin and Peter Robison October 27, 2016, 5:00 AM EDT

https://www.bloomberg.com/news/articles/2016-10-27/twitter-s-firehose-of-tweets-is-incredibly-valuable-and-just-as-dangerous

Discussion

• Big trend in NLP: Generating polite answers and summaries.

• Big trend in IR/NLP: Asking clarifying questions in chatbots

Eliza: Weizenbaum (1966)

Men are all alike.

IN WHAT WAY

They're always bugging us about something or other.

CAN YOU THINK OF A SPECIFIC EXAMPLE

Well, my boyfriend made me come here. YOUR BOYFRIEND MADE YOU COME HERE

He says I'm depressed much of the time.

I AM SORRY TO HEAR YOU ARE DEPRESSED

...

WHO ELSE IN YOUR FAMILY TAKES CARE OF YOU?
My father
YOUR FATHER

Ethical implications of ELIZA

- People became deeply emotionally involved with the program
- Weizenbaum's secretary asked him to leave the room when she talked with ELIZA
- When he suggested that he might want to store all the ELIZA conversations for later analysis, people immediately pointed out the privacy implications
 - Suggesting that they were having quite private conversations with ELIZA

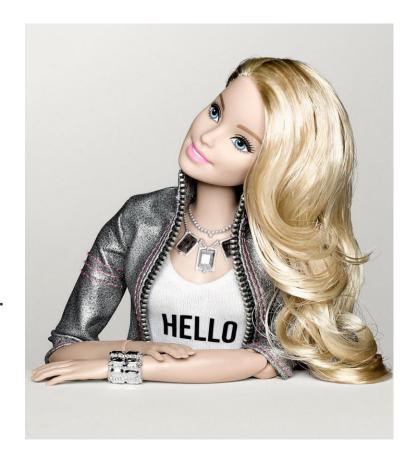
Barbie Wants to Get to Know Your Child

Barbara Grosz, NYT 2015

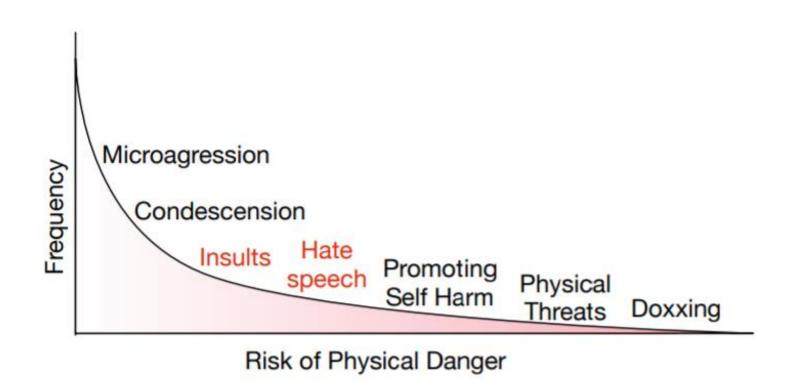
- "Hey, new question," Barbie said. "Do you have any sisters?"
- "Yeah," Tiara said. "I only have one."
- "What's something nice that your sister does for you?" Barbie asked.
- "She does nothing nice to me," Tiara said tensely.

Barbie forged ahead. "Well, what is the last nice thing your sister did?"

- "She helped me with my project and then she destroyed it."
- "Oh, yeah, tell me more!" Barbie said, oblivious to Tiara's unhappiness.
- "That's it, Barbie," Tiara said.
- "Have you told your sister lately how cool she is?"
- "No. She is *not* cool," Tiara said, gritting her teeth.
- "You never know, she might appreciate hearing it," Barbie said.



The Spectrum of Toxic Language



Jurgens D., Chandrasekharan E., and Hemphill L. (2019) A Just and Comprehensive Strategy for Using NLP to Address Online Abuse. *ACL*

Hate Speech has Many Shades

- Umbrella term: Abuse
- Hate speech
- Offensive language
- Sexist and racist
- Aggression
- Profanity

- Cyberbullying
- Harassment
- Trolling
- Anti-social behavior
- Toxic language

•

What is Hate Speech?

"any communication that disparages a person or a group on the basis of some characteristic such as race, color, ethnicity, gender, sexual orientation, nationality, religion, or other characteristic"

(Nockleby, J. Encyclopedia of the American Constitution 2000)

TARGET

What is Hate Speech?

"language that is used **to expresses hatred** towards a targeted group or is **intended to be derogatory, to humiliate, or to insult** the members of the group"

(Davidson et al., Automated Hate Speech Detection and the Problem of Offensive Language, *ICWSM* 2017)

INTENT

What is Hate Speech?

"language that threatens or incites violence"

(Davidson et al., Automated Hate Speech Detection and the Problem of Offensive Language, *ICWSM* 2017)

EFFECT

What is Hate Speech?

"any offense motivated, in whole or in a part, by the offender's **bias** against an aspect of a group of people"

(Silva et al., Analyzing the Targets of Hate in Online Social Media, *ICWSM* 2016)

THE CAUSE

Who Are Target of Hate Speech?

I <intensity> <userintent> <hatetarget>
"If*cking hate white people"

Twitter	% posts	Whisper	% posts
I hate	70.5	I hate	66.4
I can't stand	7.7	I don't like	9.1
I don't like	7.2	I can't stand	7.4
I really hate	4.9	I really hate	3.1
I fucking hate	1.8	I fucking hate	3.0
I'm sick of	0.8	I'm sick of	1.4
I cannot stand	0.7	I'm so sick of	1.0
I fuckin hate	0.6	I just hate	0.9
I just hate	0.6	I really don't like	0.8
I'm so sick of	0.6	I secretly hate	0.7

(Silva et al., Analyzing the Targets of Hate in Online Social Media, ICWSM 2016)

Who Are Target of Hate Speech?

I <intensity> <userintent> <hatetarget>

"I f*cking hate white people"

Twitter		Whisper	
Hate target	% posts	Hate target	% posts
Nigga	31.11	Black people	10.10
White people	9.76	Fake people	9.77
Fake people	5.07	Fat people	8.46
Black people	4.91	Stupid people	7.84
Stupid people	2.62	Gay people	7.06
Rude people	2.60	White people	5.62
Negative people	2.53	Racist people	3.35
Ignorant people	2.13	Ignorant peo-	3.10
		ple	
Nigger	1.84	Rude people	2.45
Ungrateful people	1.80	Old people	2.18

(Silva et al., Analyzing the Targets of Hate in Online Social Media, ICWSM 2016)

RETWEETS

15,909

LIKES

9:15 AM - 25 Nov 2014

17,316

Donald J. Trump @realDonaldTrump

Stereotypes in user-generated content



Discussion

- Who should fix this?
 - The researcher/developer?
 - The user of the technology?
 - Paper reviewers?
 - The IRB? The University?
 - Society as a whole?

We need to be aware of real-world impact of our research and understand the relationship between ideas and consequences

Misinformation

- This is a widely studied subject in Communication and Social Sciences.
 - Misinformation is false or inaccurate information that is communicated regardless of an intention to deceive
 - Disinformation is deliberately misleading or biased information; manipulated narrative or facts
 - Propaganda is information spread to make someone or something look bad or good. Propaganda is designed to influence people emotionally.

Social media platforms amplify this problem.

How to tell the truth in a persuasive manner

We have Army, navy and air force Reporting guidelines Press briefings	They have A war machine Censorship Propaganda
We Take out Suppress Dig in	They Destroy Kill Cower in their fox holes
Our men are Boys Lads	Their men are Troops Hordes

The Guardian 1990

DS for Social Good

Education

Psychological counselling

Disaster response

Depression detection

Legal tasks

Clinical decision support

QA / chatbots

Chatbots

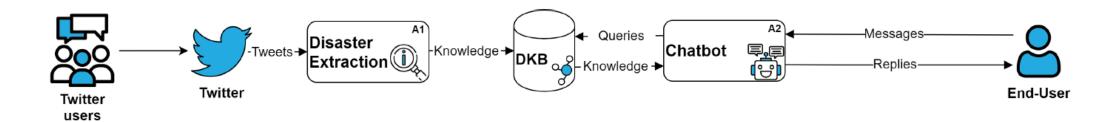
Twitter / chatbot

Slack

100% recall

NovaMedSearch

Chatbot for disasters



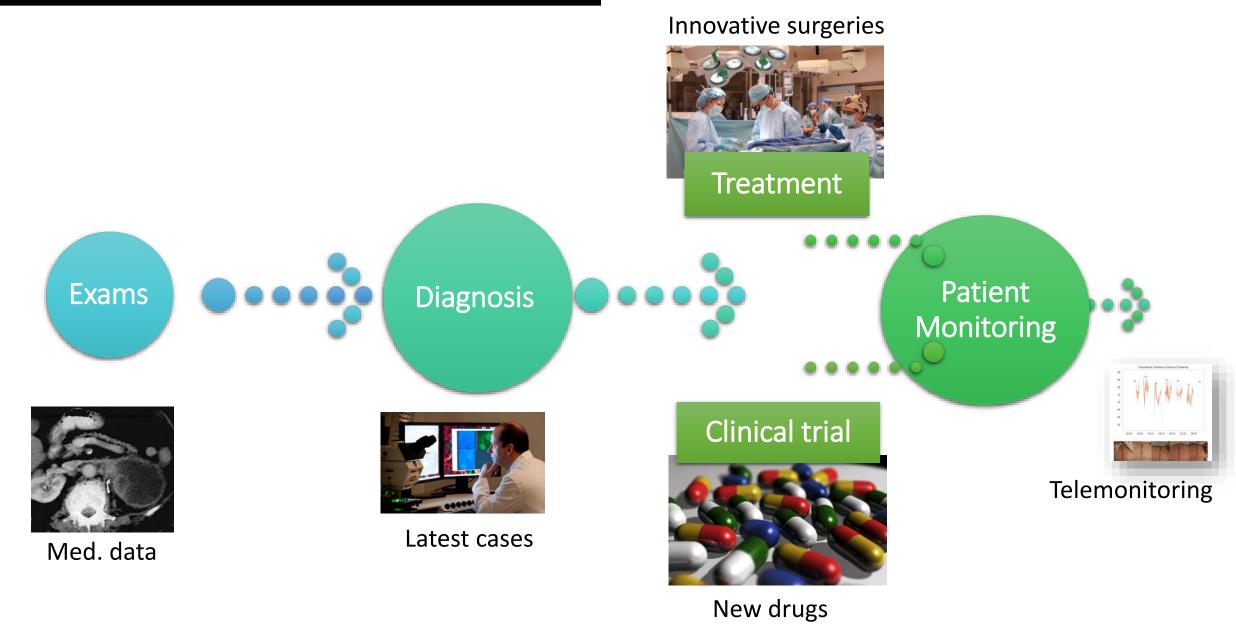
Chatbots for citizen feedback

Clinical Workflow

 Most work in Precision Medicine aims to find the treatment based on the individual's health records.

• Data-driven approaches allow the discovery of critical information that can support clinicians in their decisions.

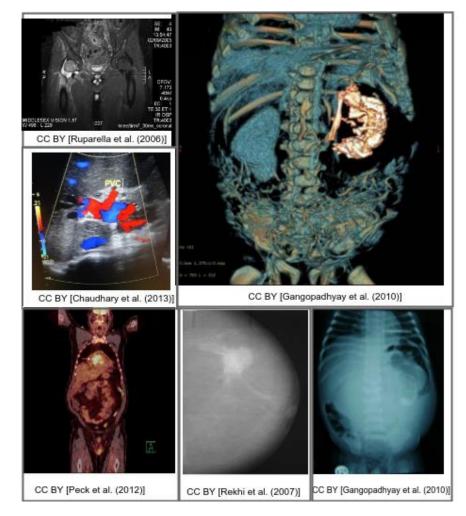
This support can happen in all stages of the clinical workflow.



Medical ImageNet

 Aims to create a peta-byte collection of medical images with extensive annotations.

 This resources promises to significantly boost the accuracy of medical diagnosis systems.



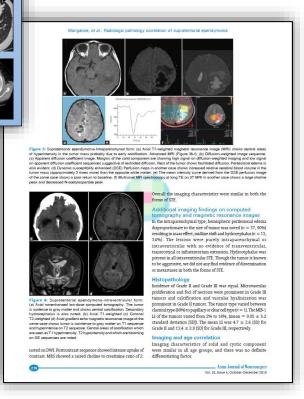
Understand patient data

Patient clinical history* A woman in her mid-30s.

CT scan revealed a cystic mass in the right lower lobe. She later developed right arm weakness and aphasia. She was treated, but **four years later** suffered **another stroke**.

Follow-up CT scan showed multiple new cystic lesions.

Electronic Health Records



Summary

- Computational Ethics
 - Biases
 - Privacy and Profiling
 - Persuasion and deception
 - Aggressive language (hate speech, trolling)
 - Misinformation and disinformation
- DS for Social Good
 - Education
 - Natural disasters
 - Depression
 - Clinical

