
Distributed Systems 19/20 – DI/FCT/NOVA / 1

DISTRIBUTED SYSTEMS

Lab 2

Nuno Preguiça, João Leitão, Pedro Fouto, Luís Silva

Distributed Systems 19/20 – DI/FCT/NOVA / 2

GOALS

In the end of this lab you should be able to:
• Understand what a WebService REST is
• Know how to develop a WS REST and Server in Java (using JAX-RS)
• Know how to develop a REST Client in Java (using JAX-RX)
• Use Docker to test your service using your clients

Distributed Systems 19/20 – DI/FCT/NOVA / 3

GOALS

In the end of this lab you should be able to:
• Understand what a WebService REST is
• Know how to develop a WS REST and Server in Java (using JAX-RS)
• Know how to develop a REST Client in Java (using JAX-RX)
• Use Docker to test your service using your clients

Distributed Systems 19/20 – DI/FCT/NOVA / 4

REST : REPRESENTATIONAL STATE TRANSFER

Architectural Pattern to access Information

Fundamental Approach:

An application is perceived as a collection of resources.

The key implications of this are:
• A resource is identified by a URI/URL
• The URL returns a document with a representation of the resource
• A URL can refer to a collection of resources
• It is possible to refer to other resources (from a resource) using links

Distributed Systems 19/20 – DI/FCT/NOVA / 5

REST : REPRESENTATIONAL STATE TRANSFER
EXAMPLE

Consider an application that is used to manage contact cards.

• A contact card is a resource and each contact card has an
URL associated.

• The URL of a card will return a representation of that card
(could be a textual representation of the fields of the card) –
name of the person, phone, e-mail, postal address – but it
could also be a binary representation.

• An URL can represent the whole collection of contact cards
managed by an application.

• A contact card could contain the URL of another card, for
instance to refer to the spouse of that person.

Distributed Systems 19/20 – DI/FCT/NOVA / 6

REST PROTOCOL

A client-server protocol that is stateless: each request
contains all the information that is necessary to process the
request.

• This implies that the server does not need to keep track of
relations among different requests

• It makes the interaction pattern of systems using rest simple

• It allows to do transparent caching

Distributed Systems 19/20 – DI/FCT/NOVA / 7

REST PROTOCOL

The REST interface is uniform: all resources are accessed by a
set of well-defined HTTP operations:

• POST: Creates a new resource

• GET: Obtains (a representation of) an existing resource

• PUT: Updates or Replaces an existing resource

• DELETE: Eliminates an existing resource

Distributed Systems 19/20 – DI/FCT/NOVA / 8

GOALS

In the end of this lab you should be able to:
• Understand what a WebService REST is
• Know how to develop a WS REST and Server in Java (using JAX-RS)
• Know how to develop a REST Client in Java (using JAX-RX)
• Use Docker to test your service using your clients

Distributed Systems 19/20 – DI/FCT/NOVA / 9

DEVELOPMENT OF A WEB SERVICE REST IN JAVA

In the Distributed Systems Course we are using the Jersey (JAX-RS)
framework, which highly simplifies the development of REST
services in Java.

• When using this framework, we instrument our code through
simple annotations in our Java code (e.g., @PATH, @GET,
@POST, @DELETE, …)

• Java Reflection is taken advantage by the Jersey runtime to
derive code automatically based on those annotations.

Want to know more? https://eclipse-ee4j.github.io/jersey/

Distributed Systems 19/20 – DI/FCT/NOVA / 10

DEVELOPMENT OF A WEB SERVICE REST IN JAVA
There are a few dependencies that our code will have. As discussed
last week these will be handled by Maven. The dependencies are
inserted in the pom.xml file:
<dependencies>

<dependency>

<groupId>org.glassfish.jersey.media</groupId>

<artifactId>jersey-media-json-jackson</artifactId>

<version>2.30.1</version>

</dependency>

<dependency>

<groupId>org.glassfish.jersey.core</groupId>

<artifactId>jersey-client</artifactId>

<version>2.30.1</version>

</dependency>

<dependency>

<groupId>org.glassfish.jersey.core</groupId>

<artifactId>jersey-server</artifactId>

<version>2.30.1</version>

</dependency>

<dependency>

<groupId>org.glassfish.jersey.media</groupId>

<artifactId>jersey-media-jaxb</artifactId>

<version>2.30.1</version>

</dependency>

<dependency>

<groupId>org.glassfish.jersey.containers</groupId>

<artifactId>jersey-container-jdk-http</artifactId>

<version>2.30.1</version>

</dependency>

<dependency>

<groupId>org.glassfish.jersey.inject</groupId>

<artifactId>jersey-hk2</artifactId>

<version>2.30.1</version>

</dependency>

</dependencies>

Distributed Systems 19/20 – DI/FCT/NOVA / 11

DEVELOPMENT OF A WEB SERVICE REST IN JAVA
We are going to show how to develop a Web Service REST by
example.

Our example, not accidentally, is based on the construction of
a simple mail service (and example clients).

• In this service, mails are messages sent by one user, to one
or more users. Messages have multiple fields such as a
subject and content.

• Messages are stored in our server (and identified by a
positive long integer). They are also associated with the
inbox of their destinations (recipients of the message).

• Messages are going to be our main resource in this example
(we do not have other types of explicit resources such as
users for simplicity).

Distributed Systems 19/20 – DI/FCT/NOVA / 12

MODELLING OUR MESSAGE RESOURCE AS A JAVA CLASS
Standard Java Class

package sd1920.aula2.api;

import …

public class Message {

private String sender;

private Set<String> destination;

private long creationTime;

private String subject;

private byte[] contents;

public Message() {

this.sender = null;

this.destination = new HashSet<String>();

this.creationTime = System.currentTimeMillis();

this.subject = null;

this.contents = null;

}

public Message(String sender, String destination, String subject, byte[] contents) {

…

}

public String getSender() { … }

public void setSender(String sender) { … }

Distributed Systems 19/20 – DI/FCT/NOVA / 13

MODELLING OUR MESSAGE RESOURCE AS A JAVA CLASS
Standard Java Class

package sd1920.aula2.api;

import …

public class Message {

private String sender;

private Set<String> destination;

private long creationTime;

private String subject;

private byte[] contents;

public Message() {

this.sender = null;

this.destination = new HashSet<String>();

this.creationTime = System.currentTimeMillis();

this.subject = null;

this.contents = null;

}

public Message(String sender, String destination, String subject, byte[] contents) {

…

}

public String getSender() { … }

public void setSender(String sender) { … }

…

Private Fields (but you
have to create standard

getters and setters)

Distributed Systems 19/20 – DI/FCT/NOVA / 14

MODELLING OUR MESSAGE RESOURCE AS A JAVA CLASS
Standard Java Class

package sd1920.aula2.api;

import …

public class Message {

private String sender;

private Set<String> destination;

private long creationTime;

private String subject;

private byte[] contents;

public Message() {

this.sender = null;

this.destination = new HashSet<String>();

this.creationTime = System.currentTimeMillis();

this.subject = null;

this.contents = null;

}

public Message(String sender, String destination, String subject, byte[] contents) {

…

}

public String getSender() { … }

public void setSender(String sender) { … }

…

You can have any
number of constructors…

Distributed Systems 19/20 – DI/FCT/NOVA / 15

MODELLING OUR MESSAGE RESOURCE AS A JAVA CLASS
Standard Java Class

package sd1920.aula2.api;

import …

public class Message {

private String sender;

private Set<String> destination;

private long creationTime;

private String subject;

private byte[] contents;

public Message() {

this.sender = null;

this.destination = new HashSet<String>();

this.creationTime = System.currentTimeMillis();

this.subject = null;

this.contents = null;

}

public Message(String sender, String destination, String subject, byte[] contents) {

…

}

public String getSender() { … }

public void setSender(String sender) { … }

…

But you should have a
default constructor
without arguments.

Distributed Systems 19/20 – DI/FCT/NOVA / 16

MODELLING OUR MESSAGE RESOURCE AS A JAVA CLASS
Standard Java Class

package sd1920.aula2.api;

import …

public class Message {

private String sender;

private Set<String> destination;

private long creationTime;

private String subject;

private byte[] contents;

public Message() {

this.sender = null;

this.destination = new HashSet<String>();

this.creationTime = System.currentTimeMillis();

this.subject = null;

this.contents = null;

}

public Message(String sender, String destination, String subject, byte[] contents) {

…

}

public String getSender() { … }

public void setSender(String sender) { … }

…

But you should have a
default constructor
without arguments.

Default constructor and getters/setters are
important to allow the serialization and

deserialization of this class over the
network.

Distributed Systems 19/20 – DI/FCT/NOVA / 17

DEFINING THE SERVICE INTERFACE
package sd1920.aula2.api.service;

import …

@Path(MessageService.PATH)

public interface MessageService {

final static String PATH = "/messages";

@POST

@Path("/")

@Consumes(MediaType.APPLICATION_JSON)

@Produces(MediaType.APPLICATION_JSON)

public long postMessage(Message msg);

@GET

@Path("/{mid}")

@Produces(MediaType.APPLICATION_JSON)

public Message getMessage(@PathParam("mid") long mid);

@GET

@Path("/{mid}/body")

@Produces(MediaType.APPLICATION_OCTET_STREAM)

public byte[] getMessageBody(@PathParam("mid") long mid);

@GET

@Path("/")

@Produces(MediaType.APPLICATION_JSON)

public List<Message> getMessage(@QueryParam("user") String user);

// MUST COMPLETE

void deleteMessage(long mid);

// MUST COMPLETE

void removeFromUserInbox(String user, long mid);

}

Distributed Systems 19/20 – DI/FCT/NOVA / 18

DEFINING THE SERVICE INTERFACE

Standard Java Interface enriched with
Jersey annotations and identifying the
methods supported by your service.

Distributed Systems 19/20 – DI/FCT/NOVA / 19

DEFINING THE SERVICE INTERFACE

Standard Java Interface enriched with
Jersey annotations and identifying the
methods supported by your service.

@Path(STRING VALUE)
This will be used to define the URL used to

access this service. It will be the Server URL +
the value provided in this annotation.

e.g., if the Server URL was
http://myserver:8080/rest

this service would be accessed by URLs starting
with:

http://myserver:8080/rest/messages

Distributed Systems 19/20 – DI/FCT/NOVA / 20

DEFINING THE SERVICE INTERFACE

Standard Java Interface enriched with
Jersey annotations and identifying the
methods supported by your service.

This method will allow to create (i.e., store) a
new message in the server.

Distributed Systems 19/20 – DI/FCT/NOVA / 21

DEFINING THE SERVICE INTERFACE
This method will allow to create (i.e., store) a

new message in the server.

The HTTP operation is POST (it creates a new
resource), therefore the method is

parameterized with the @POST annotation.

Distributed Systems 19/20 – DI/FCT/NOVA / 22

DEFINING THE SERVICE INTERFACE
This method will allow to create (i.e., store) a

new message in the server.

Methods in a service are also parameterized with
an @Path annotation. Its contents define

additional parts of the URL used to access this
resource (in relation to the service URL).

”/” is a special value that indicates that this
operation is accessed through the same URL as

the service itself.

Distributed Systems 19/20 – DI/FCT/NOVA / 23

DEFINING THE SERVICE INTERFACE
This method will allow to create (i.e., store) a

new message in the server.

The @Consumes annotation indicates that this
method will receive an argument through the

body of the HTTP request (The parameter msg).

We typically encode Java objects sent in the
body of an HTTP request in JavaScript Object

Notation (JSON)

Distributed Systems 19/20 – DI/FCT/NOVA / 24

DEFINING THE SERVICE INTERFACE
This method will allow to create (i.e., store) a

new message in the server.

The @Produces annotation indicates that this
method will return a value (in this case a long
value) that will be encoded in the body of the

HTTP response sent back to the client.

Again, we typically encode native java types sent
in the body of an HTTP request/reply in

JavaScript Object Notation (JSON)

Distributed Systems 19/20 – DI/FCT/NOVA / 25

DEFINING THE SERVICE INTERFACE
These methods will allow to, respectively, access

an existing message in the server, and access
the contents of the message (encoded as byte[])

directly.

Distributed Systems 19/20 – DI/FCT/NOVA / 26

DEFINING THE SERVICE INTERFACE
These methods will allow to, respectively, access

an existing message in the server, and access
the contents of the message (encoded as byte[])

directly.

Both methods expose representations of
resources (GET Operations). Therefore they are

parameterized with the @GET annotation.

Distributed Systems 19/20 – DI/FCT/NOVA / 27

DEFINING THE SERVICE INTERFACE
These methods will allow to, respectively, access

an existing message in the server, and access
the contents of the message (which are encoded

as byte[]) directly.

Note that the @Path annotation has a value
within {}. This indicates that this part of the path

will be a variable – named in this case mid.

Distributed Systems 19/20 – DI/FCT/NOVA / 28

DEFINING THE SERVICE INTERFACE

Jersey will process the URL automatically and assign it to that method parameter.
You can have multiple path variables mapped with @PathParam in the same path.
Only native types (including String) can be passed as Path parameters (i.e., Java
classes and byte[] have to be passed through the body of the HTTP request using

@Consumes)

These methods will allow to, respectively, access
an existing message in the server, and access

the contents of the message (which are encoded
as byte[]) directly.

Variables in the path have to be associated with
a parameter of the method. This is done with the

@PathParam() annotation whose argument is
the name of the variable in the path.

Distributed Systems 19/20 – DI/FCT/NOVA / 29

DEFINING THE SERVICE INTERFACE
These methods will allow to, respectively, access

an existing message in the server, and access
the contents of the message (which are encoded

as byte[]) directly.

Notice that the value of this @Path annotation
includes a static part -- /body – you can mix

static and variable parts in @Path annotations.

You cannot have two methods with the same
operation (e.g., @GET) with the same or

undistinguishable path values (as these would
result in URLs that could be mapped to either

method).

Distributed Systems 19/20 – DI/FCT/NOVA / 30

DEFINING THE SERVICE INTERFACE
These methods will allow to, respectively, access

an existing message in the server, and access
the contents of the message (which are encoded

as byte[]) directly.

Since both methods return a value to the client, both need to be
annotated with @Produces.

Typically, methods that return byte information (i.e., byte[]) produce
APPLICATION_OCTET_STREAM. While methods that return Java

classes or native types produce APPLICATION_JSON.
The annotation defines how data is serialized in the HTTP reply.

Distributed Systems 19/20 – DI/FCT/NOVA / 31

DEFINING THE SERVICE INTERFACE
The final method will allow to list existing

messages in the server.
It has an optional parameter that if provided,
only lists the messages in the inbox of a single

user (given his username)

Distributed Systems 19/20 – DI/FCT/NOVA / 32

DEFINING THE SERVICE INTERFACE
The final method will allow to list existing

messages in the server.
It has an optional parameter that if provided,
only lists the messages in the inbox of a single

user (given his username)

The optional parameter uses the @QueryParam with an argument
that is the name of the optional parameter.

Note that query parameters are not part of the @Path (otherwise
they would be mandatory)

They are however passed in the URL using the ? character. E.g.,
http://myserver:8080/rest/messages?user=jleitao

Distributed Systems 19/20 – DI/FCT/NOVA / 33

MORE ABOUT ANNOTATIONS AND METHODS

• GET and DELETE are similar.
• They should avoid to send information in the body of the

request (and hence usually do not have a @Consumes
Annotation).

• POST and PUT are similar.
• They should always send a representation of the resource

being manipulated in the body of the HTTP request (and
hence usually have a @Consumes Annotation).

• GET should always return a representation of a resource.
• (Therefore, a @Produces Annotation is frequent).

Distributed Systems 19/20 – DI/FCT/NOVA / 34

IMPLEMENTING THE SERVICE

Regular Java Class that implements the Interface
with the annotations

(The annotations are associated to the class and
methods through inheritance)

Distributed Systems 19/20 – DI/FCT/NOVA / 35

IMPLEMENTING THE SERVICE

Resources that have internal state should be
defined as @Singleton, so that a single

instance exists in the server. Otherwise, the
server will create an instance per request.

Distributed Systems 19/20 – DI/FCT/NOVA / 36

IMPLEMENTING THE SERVICE: POST MESSAGE

Distributed Systems 19/20 – DI/FCT/NOVA / 37

IMPLEMENTING THE SERVICE: POST MESSAGE

Test error conditions!

If some condition should make the
operation fail, an appropriate HTTP error
should be sent in the response. This is
achieved by throwing a
WebApplicationException parameterized
with the adequate error code.

Distributed Systems 19/20 – DI/FCT/NOVA / 38

IMPORTANT HTTP RESPONSE CODES
Range 100 – 199: Information (rarely seen)

Range 200 – 299: Success
200: OK (the operation was successful, and the reply contains information)
204: No Content (the operation was successful but there is no information
returned).

Range 300 – 399: Redirection: additional action is required
301: Moved Permanently (the resource is now represented by a new URL,
which is provided in this answer)

Range 400 – 499: Client Error (e.g., preparing request)
404: Page/Resource not found
409: Conflict – executing the request violates logic rules

Range 500 – 599: Server Error
500: Internal Server Error – usually means an unhandled exception was
thrown while executing request

Distributed Systems 19/20 – DI/FCT/NOVA / 39

IMPLEMENTING THE SERVICE: POST MESSAGE

The value that is returned by the
method will be encapsulated within the
body of the HTTP response sent back to
the client (in JSON since that was the
parameter in the @Produces annotation)

Distributed Systems 19/20 – DI/FCT/NOVA / 40

IMPLEMENTING THE SERVICE: GET MESSAGE

Test error condition and return 404 if the
operation targets a message that does
not exists.

Distributed Systems 19/20 – DI/FCT/NOVA / 41

IMPLEMENTING THE SERVICE: GET MESSAGES

This parameter is obtained from a query
param, it is optional and will be null if no
value is provided in the request.

Distributed Systems 19/20 – DI/FCT/NOVA / 42

IMPLEMENTING THE SERVICE: SERVER CODE (MAIN)

Distributed Systems 19/20 – DI/FCT/NOVA / 43

IMPLEMENTING THE SERVICE: SERVER CODE (MAIN)
This defines the server URL. If the
machine IP address is 192.168.1.103 the
URL will become:

http://192.168.1.103:8080/rest

Distributed Systems 19/20 – DI/FCT/NOVA / 44

IMPLEMENTING THE SERVICE: SERVER CODE (MAIN)
Multiple resources (i.e., services) can be
registered. They should have different
(top level) @Path annotations.

Distributed Systems 19/20 – DI/FCT/NOVA / 45

IMPLEMENTING THE SERVICE: SERVER CODE (MAIN)
This effectively starts the server (with
their own threads to handle client
requests).

Distributed Systems 19/20 – DI/FCT/NOVA / 46

GOALS

In the end of this lab you should be able to:
• Understand what a WebService REST is
• Know how to develop a WS REST and Server in Java (using JAX-RS)
• Know how to develop a REST Client in Java (using JAX-RX)
• Use Docker to test your service using your clients

Distributed Systems 19/20 – DI/FCT/NOVA / 47

IMPLEMENTING THE CLIENT: POST MESSAGE (1/2)
The first part of the client only asks the
user for (1) The server URL; (2) the
contents necessary to build a new
message to send to the server.

The interesting part is after this

Distributed Systems 19/20 – DI/FCT/NOVA / 48

IMPLEMENTING THE CLIENT: POST MESSAGE (2/2)

We start by creating a ClientConfig (later on this
can be used to control the behavior of the client)
and from that generate an instance of a Client.

Distributed Systems 19/20 – DI/FCT/NOVA / 49

IMPLEMENTING THE CLIENT: POST MESSAGE (2/2)

We then create a WebTarget instance, whose base target is the server URL
(e.g., http://192.168.1.103:8080/rest). We then can concatenate any
number of other elements to the URL. Here we are just adding the path
corresponding to the service (enclosed in the top level @Path annotation of
the service): e.g., http://192.168.1.103:8080/rest/messages

Distributed Systems 19/20 – DI/FCT/NOVA / 50

IMPLEMENTING THE CLIENT: POST MESSAGE (2/2)

From the target, we create a request, which we parameterize with the
.accept() method to state what is the format in which we can receive the
return value in the body of the HTTP response (must match the @Produces
annotation on the server).

This is optional and is only performed when the endpoint returns some
value.

Distributed Systems 19/20 – DI/FCT/NOVA / 51

IMPLEMENTING THE CLIENT: POST MESSAGE (2/2)

Finally, we execute the post method, because the endpoint were are trying
to use is a POST HTTP operation. As an argument we can encode the
parameter that is passed in the body of the HTTP request using the Entity
classe. The second argument must match the annotation @Consumes on the
server side. The argument of Post is optional.

The invocation of post effectively executes the request to the server and
waits for a response that is returned.

Distributed Systems 19/20 – DI/FCT/NOVA / 52

IMPLEMENTING THE CLIENT: POST MESSAGE (2/2)

We can now process the reply received from the server. We start by checking
the HTTP response code (OK – 200), and check if the body of the reply
contains an object.

If so, we access the contents of the body with the method readEntity, which
is parameterized with the class we want to read from the body.

If the request failed, we print the HTTP response code.

Distributed Systems 19/20 – DI/FCT/NOVA / 53

IMPLEMENTING THE CLIENT: GET MESSAGE

The client to execute the get
operation is very similar, except
that:
(1) we have an additional path

component with the message
identifier (which is passed in
the URL as a path parameter)

(2) Instead of the method post we
use get, because this endpoint
is a HTTP Get operation

Distributed Systems 19/20 – DI/FCT/NOVA / 54

IMPLEMENTING THE CLIENT: GET MESSAGES

In this example we might have an
optional parameter that is passed as a
query param. To provide the query
param we use the queryParam method
over the target.

Distributed Systems 19/20 – DI/FCT/NOVA / 55

IMPLEMENTING THE CLIENT: GET MESSAGES

This method returns a List of messages.
To receive an object that has a generic
type (such as List), we use the
GenericType interface in the readEntity
method.

Distributed Systems 19/20 – DI/FCT/NOVA / 56

GOALS

In the end of this lab you should be able to:
• Understand what a WebService REST is
• Know how to develop a WS REST and Server in Java (using JAX-RS)
• Know how to develop a REST Client in Java (using JAX-RX)
• Use Docker to test your service using your clients

Distributed Systems 19/20 – DI/FCT/NOVA / 57

TESTING WITH DOCKER
1. Build the image (on your project folder run):

• mvn clean compile assembly:single docker:build

2. If you don’t have it yet, create the docker network sdnet
• docker network create -d bridge sdnet

3. Run the server in a named container (with port
forwarding)

• docker run -h msgsrv --name msgsrv --network sdnet -p 8080:8080
sd1920-aula2-xxxxx-yyyyy

NOTE: Check the URL for the server – you will need it in the clients.

Distributed Systems 19/20 – DI/FCT/NOVA / 58

TESTING WITH DOCKER
4. Run another container in interactive mode (to execute

clients) in a second terminal window
• docker run -it --network sdnet sd1920-aula2-xxxxx-yyyyy /bin/bash

Distributed Systems 19/20 – DI/FCT/NOVA / 59

TESTING WITH DOCKER
5. Run the client to post a message in the second container

• java -cp /home/sd/sd1920.jar sd1920.aula2.clients.PostMessageClient

Distributed Systems 19/20 – DI/FCT/NOVA / 60

TESTING WITH DOCKER
6. Run the client to get a message in the second container

• java -cp /home/sd/sd1920.jar sd1920.aula2.clients.GetMessageClient

Distributed Systems 19/20 – DI/FCT/NOVA / 61

TESTING WITH DOCKER
7. Use your browser to access your service (optional)

8. Try the other clients that are provided in the second
container (optional)

Distributed Systems 19/20 – DI/FCT/NOVA / 62

EXERCISE

1. Complete the two operations missing in the server
(deleteMessage is a DELETE, and removeFromUserInbox is
a PUT). Don’t forget to:

1. Add the Jersey annotations where you need them.
2. Complete the implementation of the service
3. You cannot delete something that does not exists.

2. Create two new clients, based on the provided ones, to
exercise these two operations above.

3. Test your implementation using docker.

4. Integrate the Discovery class from last week to enable all
clients to obtain the server URL automatically.

