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Foreword to the Original French edition

Jean-Louis Krivine

In France, the discipline of logic has traditionally been ignored in university-level
scientific studies. This follows, undoubtedly, from the recent history of mathe-
matics in our country which was dominated, for a long while, by the Bourbaki
school for whom logic was not, as we know, a strong point. Indeed, logic origi-
nates from reflecting upon mathematical activity and the common gut-reaction of
the mathematician is to ask: “What is all that good for? We are not philosophers
and it is surely not by cracking our skulls over modus ponens or the excluded
middle that we will resolve the great conjectures, or even the tiny ones...” Not
so fast!

A new ingredient,of some substance, has come to settle this somewhat byzantine
debate over the importance of logic: the explosion of computing into all areas of
economic and scientific life, whose shock wave finally reached the mathematicians
themselves.

And, little by little, one fact dawns on us: the theoretical basis for this nascent
science is nothing other than the subject of all this debate, mathematical logic.

It is true that certain areas of logic were put to use more quickly than oth-
ers. Boolean algebra, of course, for the notions and study of circuits; recursive-
ness, which is the study of functions that are computable by machine; Herbrand’s
theorem, resolution and unification, which form the basis of ‘logic programming’
(the language PROL OG); proof theory, and the diverse incarnations of the Com-
pleteness theorem, which have proven themselves to be powerful analytical tools
for mature programming languages.

But, at the rate at which things are going, we can imagine that even those areas
that have remained completely ‘pure’, such as set theory, for example, will soon
see their turn arrive.

As it ought to be, the interaction is not one-way, far from it; a flow of ideas and
new, deep intuitions, arising from computer science, has come to animate all these
sectors of logic. This discipline is now one of the liveliest there is in mathematics
and 11 is evolving very rapidly.

So there is no doubt about the utility and timeliness of a work devoted to a
general introduction to logic; this book meets its destiny. Derived from lectures
for the Diplome d’Etudes Approfondies (DEA) of Logic and the Foundations
of Computing at the University of Paris VII, it covers a vast panorama: Boolean
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algebras, recursiveness, model theory, set theory, models of arithmetic and Godel’s
theorems.

The concept of model is at the core of this book, and for a very good reason
since it occupies a central place in logic: despite (or thanks to) its simple, and even
elementary, character, it illuminates all areas, even those that seem farthest from
it. How, for example. can one understand a consistency proof in set theory without
first mastering the concept of being a model of this theory? How can one truly
grasp Godel’s theorems without having some notion of non-standard models of
Peano arithmetic? The acquisition of these semantic notions is, I believe, the mark
of a proper training for a logician, at whatever level. R. Cori and D. Lascar know
this well and their text proceeds from beginning to end in this direction. Moreover,
they have overcome the risky challenge of blending all the necessary rigour with
clarity, pedagogical concern and refreshing readability.

We have here at our disposal a remarkable tool for teaching mathematical logic
and, in view of the growth in demand for this subject area, it should meet with a
marked success. This is, naturally, everything I wish for it.



Foreword to the English edition

Wilfrid Hodges

School of Mathematical Sciences
Queen Mary and Westfield College
University of London

There are two kinds of introduction to a subject. The first kind assumes that you
know nothing about the subject, and it tries to show you in broad brushstrokes
why the subject is worth studying and what its achievements are. The second kind
of introduction takes for granted that you know what the subject is about and
why you want to study it, and sets out to give you a reliable understanding of the
basics. René Cori and Daniel Lascar have written the second sort of introduction
to mathematical logic. The mark of the book is thoroughness and precision with a
light touch and no pedantry.

The volume in your hand, Part I, is a mathematical introduction to first-order
logic. This has been the staple diet of elementary logic courses for the last fifty
years, but the treatment here is deeper and more thorough than most elementary
logic courses. For example the authors prove the compactness theorem in a general
form that needs Zorn’s Lemma. You certainly shouldn’t delay reading it until you
knowaboutZorn’s Lemma - the applications here are an excellent way of learning
how to use the lemma. In Part I there are not too many excitements — probably the
most exciting topic in the book is the Godel theory in Chapter 6 of Part II, unless
you share my enthusiasm for the model theory in Chapter 8. But there are plenty of
beautiful explanations, put together with the clarity and elegance that one expects
from the best French authors.

For English students the book is probably best suited to Masters’ or fourth-year
undergraduate studies. The authors have included full solutions to the exercises;
this is one of the best ways that an author can check the adequacy of the definitions
and lemmas in the text, but it is also a great kindness to people who are studying
on their own, as a beginning research student may be. Some thirty-five years ago
[ found I needed to teach myself logic, and this book would have fitted my needs
exactly. Of course the subject has moved on since then, and the authors have
included several things that were unknown when 1 was a student. For example
their chapter on proof theory, Chapter 4 in this volume, includes a well-integrated
section on the resolution calculus. They mention the connection with PROLOG:;
but in fact you can also use this section as an introduction to the larger topic
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of unification and pattern-matching, which has wide ramifications in computer
science.

One other thing you should know. This book comes from the famous Equipe de
Logique Mathématique at the University of Paris, a research team that has had an
enormous influence on the development of mathematical logic and its links with
other branches of mathematics. Read it with confidence.



Preface

This book is based upon several years’ experience teaching logic at the UFR of
Mathematics of the University of Paris 7, at the beginning graduate level as well
as within the DEA of Logic and the Foundations of Computer Science.

As soon as we began to prepare our first lectures, we realized that it was going
(o be very difficult to introduce our students to general works about logic written
in (or even translated into) French. We therefore decided to take advantage of this
opportunity to correct the situation. Thus the first versions of the eight chapters
that you are about to read weredrafted at the same time that their content was being
taught. We insist on warmly thanking all the students who contributed thereby to
a tangible improvement of the initial presentation.

Our thanks also go to all our colleagues and logician friends, from Paris 7 and
elsewhere, who brought us much appreciated help in the form of many comments
and moral support of arare quality. Nearly all of them are co-authors of this work
since, to assemble the lists of exercises that accompany each chapter, we have
borrowed unashamedly from the invaluable resource that comprises the hundreds
and hundreds of pages of written material that were handed out to students over
the course of more than twenty-five years during which the University of Paris 7,
a pioneer in this matter, has organized courses in logic open to a wide public.

A1 this point, the reader generally expects a phrase of the following type: ‘they
are so numerous that we are obviously unable to name them all’. It is true, there
are very many to whom we extend our gratitude, but why shouldn’t we attempt to
name them all?

Thank you therefore to Josette Adda, Marouan Ajlani, Daniel Andler,
Gilles Amiot, Fred Appenzeller, Jean-Claude Archer, Jean-Pierre Azra, Jean-
Pierre Bénéjam, Chantal Berline, Claude-Laurent Bernard, Georges Blanc,
Elisabeth Bouscaren, Albert Burroni, Jean-Pierre Calais, Zoé Chatzidakis,
Peter Clote, Francois Conduché, Jean Coret, Maryvonne Daguenet, Vincent
Danos, Max Dickmann, Patrick Dehornoy, Frangoise Delon, Florence Duchéne,
Jean-Louis Duret, Marie-Christine Ferbus, Jean-Yves Girard, Daniele Gondard,
Catherine Gourion, SergeGrigorieff, Ursula Gropp, Philippe Ithier, Bernard Jaulin,
Ying Jiang, Anatole Khélif, Georg Kreisel, Jean-Louis Krivine, Ramez Labib-
Sami, Daniel Lacombe, Thierry Lacoste, Richard Lassaigne, Yves Legrandgérard,
Alain Louveau, I-rancois Lucas, Kenneth MacAloon, Gilles Macario-Rat, Sophie
Malecki, Jean Malifaud, Pascal Manoury, Francois Métayer, Marie-Hélene
Mourgues, Catherine Muhlrad-Greif, Francis Oger, Michel Parigot, Donald
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Pelletier, Marie-Jeanne Perrin, Bruno Poizat, Jean Porte, Claude Précetti,
Christophe Raffalli, Laurent Régnier, Jean-Pierre Ressayre, Iégor Reznikoff,
Philippe Royer, Paul Roziére, Gabriel Sabbagh, Claire Santoni, Marianne Simonot,
Gerald Stahl, Jacques Stern, Anne Strauss, Claude Sureson,Jacques Van de Wiele,
Francoise Ville.

We wish also to pay homage to the administrative and technical work accom-
plished by Mesdames Sylviane Barrier, Gisele Goeminne, and Claude Orieux.

May those whom we have forgotten forgive us. They are so numerous that we
are unable to name them all.

September 1993

The typographical errors in the first printing were so numerous that even Alain
Kapur was unable to locate them all. May he be assured of all our encouragement
for the onerous task that still awaits him.

We also thank Edouard Dorard and Thierry Joly for their very careful reading.
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Notes from the translator

In everyday mathematical language, the English word ‘contains’ is often used
indifferently, sometimes referring to membership of an element in a set, €, and
sometimes to the inclusion relation between sets, C. For a reader who is even
slightly familiar with the subject, this is not a serious issue since the meaning is
nearly always clear from the context. But because this distinction is precisely one
of the stumbling blocks encountered by beginning students of logic and set theory,
I have chosen to consistently use the word ‘contains’ when the meaning is € and
the word ‘includes’ when the meaning is C.

Itis perhaps more common in mathematical English to use the phrases ‘one-to-
one’ and ‘onto’ in place of the more formal-sounding ‘injective’ and ‘surjective’.
I have none the less retained ‘injective’ and ‘surjective’ as more in keeping with
the style of the original; even those who object must admit that ‘bijective’ has the
advantage over ‘one-to-one and onto’.

Where the original refers the reader to various standard texts in French for some
basic facts of algebra or topology, I have replaced these references with suitable
English-language equivalents.

It is useful to distinguish between bold zero and one (0 and 1) and plain zero and
one (0and 1). Theplain charactersarepartof the metalanguage andhavetheirusual
denotations as integers. The bold characters are used, by convention, to denote the
truth values of two-valued logic; they are also used to denote the respective iden-
tity elementsfor the operations of addition and multiplication in a Boolean algebra.

April, 2000. Donald H. Pelletier



Notes to the reader

The book is divided into two parts. The first consists of Chapters 1 through 4;
Chapters 5 through 8 comprise the second. Concepts presented in a given chapter
presume knowledge from the preceding chapters (but Chapters 2 and 5 are excep-
tions to this rule).

Each of the eight chapters is divided into sections, which, in turn, are compose
of several subsections that are numbered in an obvious way (see the Contents).

Each chapter concludes with a section devoted to exercises. The solutions to
these are grouped together at the end of the corresponding volume.

The solutions, especially for the first few chapters, are rather detailed.

Our reader is assumed to have acquired a certain practice of mathematics and
a level of knowledge corresponding, roughly, to classical mathematics as taught
in high school and in the first years of university. We will refer freely to what
we have called this ‘common foundation’, especially in the examples and the
exercises.

Nonethe less, the course overall assumes no prior knowledge in particular.

Concerning the familiar set-theoretical (meta-)language, we will use the termi-
nology and notations that are most commonly encountered: operations on sets,
relations, maps, etc., as well as N, Z, Z/ nZ, Q, R for the sets we meetevery day.
We will use N* to denote N — {0}.

If £ and F are sets and if f is a map defined on a subset of E with values in F,
the domain of f is denoted by dom(f) (it is the set of elements in £ for which
f is defined), and its image is denoted by Im( f) (it is the set of elements y in #°
for which y = f(x) is true for at least one element x in E). If A is a subset of
the domain of f, the restriction of f to A is the map from A into F, denoted by
f | A, which, with each element x in A, associates f(x). The image of the map
f | Aisalso called the direct image of A under f and is denoted by f[A]. If 8
is a subset of F, theinverseimageof B under f, denoted by f~![B], consists of
those elements x in £ such that f(x) € B. In fact, with any given map f from 4
set £ into a set F, we can associate, in a canonical way, a map from g (FE) (the set
of subsets of E) into g (F): this is the ‘direct image’ map, denoted by f which,
with any subset A of E, associates f[A], which we could then just as well denote
by f(A). In the same way, with this given map f, we could associate a map from
g (F) into g (E), calledthe ‘inverse image’ map and denoted by f- I which, with
any subset B of F, associates f ~1[B], which we could then just as well denote
by f ~1(B). (See also Exercise 19 from Chapter 2.)



Xviii NOTES TO THE READER

Perhaps it is also useful to present some details concerning the notion of word
on an alphabet; this concept will be required at the outset.

Let E be a set, finite or infinite, which we will call the alphabet. A word. w,
on the alphabet E is a finite sequence of elements of £ (i.e. a map from the set
(0, 1,...,n — 1} (where n is an integer) into E); w = (ag,ay,...,a@n—1), Or
even aopq - ..an—1, represents the word whose domain is {0, 1,...,n — 1} and
which associates a; with i (for 0 < i < n — 1). The integer n is called the
length of the word w and is denoted by Ig{w]. The set of words on E is denoted
by W(E).

If n =0, we obtain the empty word. We will adopt the abuse of language that
consists in simply writing a for the word (a) of length 1. The set W(E) can also

support a binary operation called concatenation: let w; = (ao, a1, ---,an—1)
and w2 = (bg, by, ..., b,u_1) be two words; we can form the new word w =
(ap,ai,---s@n—1,b0,b1y...,bpu—1), i.e. the map w defined on {0, 1,...,

n + m — 1} as follows:

Qi 1fO<i<n-—1;
bin ifn<i<n+m-1.

w(i) = {

This word is called the concatenation of /1 with w; and is denoted by wjw>. This
parenthesis-free notation is justified by the fact that the operation of concatenation
is associative.

Given two words w and w|, we say that wj is an initial segment of w if there ex-
ists a word wy such that w = w; w2. Toputitdifferently,if w = (ag, a1, --., an—1),
the initial segments of w are the words of the form (ag, a1, ...,a,—1) where p is
an integer less than or equal to n. We say that w, is a final segment of w if there
exists a word wy such that w = waw;; so the final segments of (ag, a1, - - - , Gn—1)
are the words of the form (a,,, ap+1, - . ., an—1) where p is an integer less than or
equalto n. In particular, the empty word and w itself are both initial segments and
final segments of w. A segment (initial or final) of w is proper if it is different
from w and the empty word.

When an element b of the alphabet ‘appears’ in a word w = apaj ...an—, we
say that it has an occurrence in w and the various ‘positions’ where it appears are
called the occurrences of b in w. We could, of course, be more precise and more
formal: we will say that b has an occurrence in w if b is equal to one of the g;
fori between O and n — 1 (i.e. if b belongs to the image of w). An occurrence of
b in w is an integer k, less than Ig[w], such that b = a;. For example, the third
occurrence of b in w is the third element of theset {k : 0 < k <n -1 and gy, = b}
in increasing order. This formalism will not be used explicitly in the text; the idea
sketched at the beginning of this paragraph will be more than adequate for what
we have to do.
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The following facts are more or less obvious and will be in constant use:

¢ for all words w; and wy, Ig[wiw2] = Iglw;] + Ig[w>];

¢ for all words w), wy and w3, the equality wiw; = wjw3 implies the equality
wy = w3 (we call this left cancellation);

e forall words wy, w; and w3, the equality w)w; = w3w; implies the equality
w) = w3 (we call this right cancellation);

e forall words wy, wy, w3 and wy, if wiwy = w3iwgy. then either w is an initial
segment of w3 or else w3 is an initial segment of w;. Analogously, under the
same assumptions, either w; is a final segment of w4 or else wy isa final segment
of w2;

¢ if wy i1s an initial segment of w, and w3 is an initial segment of wy, then
w| = wy.

We will also use the fact that VWW(E) is countable if E is either finite or countable
(this is a theorem from Chapter 7).






Introduction

There are many who consider that logic, as a branch of mathematics, has a some-
what special status that distinguishes 1t from all the others. Curiously, both its
keenest adversaries and some of its most enthusiastic disciples concur with this
conception which places logic near the margin of mathematics, at its border, or
even outside it. For the first, logic does not belong to ‘real” mathematics;the others.
on the contrary, see it as the reigning discipline within mathematics, the one thal
transcends all the others, that supports the grand structure.

To the reader who has come to meet us in this volume seeking an introduction tc
mathematical logic, the first advice we would give is to adopt a point of view thal
is radically different from the one above. The frame of mind to be adopted should
be the same as when consulting a treatise in algebra or differential calculus. Itis 2
mathematical text that we are presenting here; in it, we will be doing mathematics.
not something else. [t seems to us that this is an essential precondition for a proper
understanding of the concepts that will be presented.

That does not mean that the question of the place of logic in mathematics is
without interest. On the contrary, it is enthralling, but it concerns problems external
to mathematics. Any mathematician can (and we will even say must) at certain
times reflect on his work, transform himself into an epistemologist, a philosopher
or historian of science; but the point must be clearly made that in doing this.
he temporarily ceases his mathematical activity. Besides, there is generally no
ambiguity: whenreadinga textinanalysis, what the student of mathematicsexpects
to find there are definitions, theorems, and proofs for these theorems. If the author
has thought it appropriate to add some comments of a philosophical or histori-
cal nature, the reader never has the slightest difficulty separating the concerns
contained in these comments from the subject matter itself.

We would like the reader to approach the course that follows in this way and to
view logic as a perfectly ordinary branch of mathematics. True, it is not always
easy to do this.

The major objection surfaces upon realizing that it is necessary to accept simul-
taneously the following two ideas:

(1) logic is a branch of mathematics;

(2) the goal of logic is to study mathematics itself.



2 INTRODUCTION

Faced with this apparent paradox, there are three possible attitudes. First, one
may regard it as so serious that to undertake the study of logic is condemned in
advance; second, one may deem that the supposed incompatibility between (1)
and (2) simply compels the denial of (I), or at least its modification, which leads
to the belief that one is not really doing mathematics when one studies logic; the
third attitude, finally, consists in dismantling the paradox, becoming convinced
that it is not one, and situating mathematical logic in its proper place, within the
core of mathematics.

We invite you to follow us in this third path.

Those for whom even the word paradox is too weak will say: ‘Wait a minute!
Aren’t you putting us on when you finally get around, in your Chapter 7, to provid-
ing definitions of concepts (intersection, pair, map, ordered set, . . .) that you have
been continually using in the six previous chapters? This is certainly paradoxical.
You are surely leading us in a vicious circle’.

Well, in fact, no. There is neither a paradox nor a vicious circle.

This text is addressed to readers who have already ‘done’ some mathematics,
who have some prior experience with it, beginning with primary school. We do not
ask you to forget all that in order to rebuild everything from scratch. [t is the oppo-
site that we ask of you. We wish to exploit the common background that is ours:
familiarity with mathematical reasoning (induction, proof by contradiction,. . .),
with everyday mathematical objects (sets (yes, even these!), relations, functions,
integers, real numbers, polynomials, continuous functions, . ..), and with some
concepts that may be less well known (ring, vector space, topological space,. . .).
That is what is done in any course in mathematics: we make use of our prior
knowledge in the acquisition of new knowledge. We will proceed in exactly
this way and we will learn about new objects, possibly about new techniques
of proof (but caution: the mathematical reasoning that we habitually employ will
never be called into question; on the contrary, this is the only kind contemplated
here).

[f we simplify a bit, the approach of the mathematician is almost always the
same whether the subject matter under study is measure theory, vector spaces,
ordered sets, or any other area of so-called classical mathematics. It consists in
examining structures, i.e. sets on which relations and functions have been defined,
and correspondences among these structures. But, foreach of these classical areas,
there was a particular motivation that gave birth to it and nurtured its development.
The purpose was to provide a mathematical model of some more or less ‘con-
crete’ situation, to respond to an expressed desire arising from the world outside
mathematics, to furnish a useful mathematical tool (as a banal illustration of this,
consider that vector spaces arose, originally, to represent the physical space in
which we live).

Logic, too, follows this same approach; its particularity is that the reality it
attempts to describe is not one from outside the world of mathematics, but rather
the reality that is mathematics itself.
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This should not be awkward, provided we remain aware of precisely what is
involved. No student of mathematics confuses his physical environment with
an oriented three-dimensional euclidean vector space, but the knowledge of this
environment assists one’s intuition when it comes to proving some property of this
mathematical structure. The same applies to logic: in a certain way, we are going
to manufacture a copy, a prototype, we dare say a reduced model of the universe
of mathematics, with which we are already relatively familiar. More precisely, we
will build a whole collection of models, more or less successful (not every vector
space resembles our physical space). [n addition to a specimen that is truly similar
to the original, we will inevitably have created others (at the close of Chapter 6,
we should be in position to understand why), often rather different from what
we imagined at the outset. The study of this collection teaches us many lessons;
notably, it permits those who undertake this study to ask themselves interesting
questions about their perceptions and their intuitions of the mathematical world.
Be that as it may, we must understand that it is essential not to confuse the original
that inspired us with the copy or copies. But the original is indispensable for the
production of the copy: our familiarity with the world of mathematics guides us in
fabricating the representation of it that we will provide. But at the same time, our
undertaking is a mathematical one, within this universe that we are attempting to
beiter comprehend.

So there is no vicious circle. Rather than a circle, imagine a helix (nothing vicious
there!), a kind of spiral staircase: we are on the landing of the nth floor, where our
mathematical universe is located; call this the ‘intuitive level’. Our work takes us
downa level, tothe (n — 1)st floor, where we find the prototype, the reduced model;
we will then be at the ‘formal’ level and our passage from one level to the other
will be called ‘formalization’. What is the value of n? This makes absolutely no
difference; there is no first nor last level. Indeed, if our model is well constructed,
if in reproducing the mathematical universe it has not omitted any detail, then
it will also contain the counterpart of our very own work on formalization; this
requires us to consider level n — 2, and so on. At the beginning of this book, we find
ourselves at the intuitive level. The souls that inhabit it will also be called intuitive
objects; we will distinguish these from their formal replica by attaching the prefix
‘meta’ to their names (meta-integers, meta-relations, even meta-universe since the
word ‘universe’ will be given a precise technical meaning in Chapter 7). We will
go so far as to say that for any value of n, the nth level in our staircase is intuitive
relative to level n — 1 and 1s formal relative to level n + 1. As we descend, 1.e. as
we progress in our formalization, we could stop for a rest at any moment, and take
the opportunity to verify that the formal model, or at least what we can see of it,
agrees with the intuitive original. This rest period concerns the meta-intuitive, i.e.
leveln + 1.

S0 we must face the facts: it is no more feasible to build all of mathematics
‘ex nihilo’ than to write an English—English dictionary that would be of use to
a Martian who knows nothing of our lovely language. We are faced here with
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a question that had considerable importance in the development of logic at the
beginning of the century and about which it is worth saying a few words.

Set theory (it matters little which theory: ZF, Z, or some other), by giving legit-
imacy to infinite objects and by allowing these to be manipulated just like ‘real’
objects (the integers, for example), with the same logical rules, spawned a fair
amount of resistance among certain mathematicians; all the more because the ini-
tial attempts turned out to be contradictory, The mathematical world was then split
into two clans. On the one hand, there were those who could not resist the freedom
that set theory provided, this ‘Cantorian paradise’ as Hilbert called it. On the other
hand were those for whom only finite objects (the integers, or anything that could
be obtained from the integers in a finite number of operations) had any meaning
and who, as a consequence, denied the validity of proofs that made use of set
theory.

To reconcile these points of view, Hilbert had imagined the following strategy
(the well-known ‘Hilbert programme’): first, proofs would be regarded as finite
sequences of symbols, hence, as finite objects (that is what is done in this book
in Chapters 4 and 6); second, an algorithm would be found that would transform
a proof that used set theory into a finitary proof, i.e. a proof that would be above
all suspicion. If this programme could be realized, we would be able to see, for
example, that set theory is consistent: for if not, set theory would permit a proof
of 0 = 1 which could then, with the help of the algorithm suggested above, be
transformed into a finitary proof, which is absurd.

This hope was dashed by the second incompleteness theorem of Godel: surely,
any set theory worthy of this name allows the construction of the set of natural
numbers and, consequently, its consistency would imply the consistency of Peano’s
axioms. Godel’s theorem asserts that this cannot be done in a finitary way.

The conclusion is that even finitary mathematics does not provide a foundation
for our mathematical edifice, as presently constructed.

The process of formalization involves two essential stages. First, we fix the
context (the structures) in which the objects evolve while providing a syntax to
express their properties (the languages and the formulas). Here, the important
concept is the notion of satisfaction which lies at the heart of the area known as
semantics. It would be possible to stop at this pointbut we can also go furtherand
formalize the reasoning itself; this is the second stage in the formalization. Here,
we treat deductions or formal proofs as mathematical objects in their own right.
We are then not far from proof theory, which is the branch of logic that specializes
in these questions.

This book deliberately assigns priority to the first stage. Despite this, we will
not ignore the second, which is where the most famous results from mathematical
logic (Godel’s theorems) are situated. Chapter 4 is devoted to the positive results
in this area: the equivalence between the syntactic and semantic points of view in
the context that we have selected. This equivalence is called ‘completeness’. There
are several versions of this simply because there are many possible choices for a
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formal system of deduction. One of these systems is in fashion these days because
of its use in computer science: this is the method of resolution. We have chosen to
introduce it after first presenting the traditional completeness theorem.

The negative results, the incompleteness theorems, will be treated in Chapter 6,
following the study of Peano’s arithmetic. This involves, as we explained above,
abandoning our possible illusions.

The formalization of reasoning will not occur outside the two chapters that we
have just mentioned.

Chapter 1 treats the basic operations on truth values, ‘true’ and ‘false’. The
syntax required is very simple (propositional formulas) and the semantics (well-
known truth tables) is not very complicated. We are interested in the truth value of
propositions, while carefully avoiding any discussion of the nature of the properties
expressed by means of these propositions. Our concern with what they express,
and with the ways they do it, is the purpose of Chapter 3. We see immediately that
the operators considered in the first chapter (the connectives ‘and’, ‘or’, ‘implies’
and s0 on) do not suffice to express familiar mathematical properties. We have to
introduce the quantifiers and we must also provide a way of naming mathemati-
cal objects. This leads to formulas that are sequences of symbols obeying rather
coraplicated rules. Following the description of a syntax that is considerably more
complex than that for propositional calculus, we define the essential concept: sat-
i1sfaction of a formula in a structure. We will make extensive use of all this, which
is called predicate calculus, in Chapters 4 and 6, to which we referred earlier, as
well as in Chapters 7 and 8. You will have concluded that it is only Chapter 5 that
does not require prior knowledge of predicate calculus. Indeed, it is devoted to the
study of recursive functions, a notion that is absolutely fundamental for anyone
with even the slightest interest in computer science. We could perfectly well begin
with this chapter provided we refer to Chapter 1 for the process of inductive def-
inition, which 1s described there in detail and which is used as well for recursive
functions.

In Chapter 7 we present axiomatic set theory. It is certainly there that the sense
of paradox to which we referred will be most strongly felt since we purport to
construct mathematical universes as if we were defining a field or a commutative
group. But, once a possible moment of doubt has passed, one will find all that a
mathematician should know about the important notions of cardinals and ordinals,
the axiom of choice, whose status is generally poorly understood, and, naturally,
a list of the axioms of set theory.

Chapter 8 carries us a bit further into an area of which we have so far only caught
a ghimpse: model theory. [ts ambition is to give you a taste for this subject and to
stirnulate your curiosity to learn more. In any case, it should lead you to suspect
that mathematical logic is a rich and varied terrain, where one can create beautiful
things, though this can also mean difficult things.

Have we forgotten Chapter 2?7 Not at all! It is just that it constitutes a singularity
in this book. To begin with, it is the only one in which we employ notions from
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classical mathematics that a student does not normally encounter prior to the upper-
level university curriculum (topological spaces, rings and ideals). Moreover, the
reader could just as well skip it: the concepts developed there are used only in some
of the exercises and in one section of the last chapter. But we have included it for
at least three reasons: the first is that Boolean algebras are the “correct” algebraic
structures for logic; the second is that it affords us an opportunity to display how
perfectly classical mathematics, of a not entirely elementary nature, could be linked
in a natural way with the study of logic; the third, finally, is that an exposure to
Boolean algebras is generally absent from the mathematical literature offered to
students, and is even more rarely proposed to students outside the technical schools.
So you should consider Chapter 2, if you will, as a little supplement that you may
consult or not, as you wish.

We will probably be criticized for not being fair, either in our choice of the
subjects we treat or in the relative importance we accord to each of them. The
domain of logic is now so vast that it would have been absolutely impossible to
introduce every one of its constituents. So we have made choices: as we have
already noted, proof theory is barely scratched; lambda calculus and algorithmic
complexity are absent despite the fact that they occupy an increasingly important
place in research in logic (because of their applications to the theory of comput-
ing which have been decisive). The following are also absent: non-classical logics
(intuitionist . . .), second-order logic (in which quantifications range over relations
on a structure as well as over its elements), or so-called ‘infinitary’ logics (which
allow formulas of infinite length). These choices are dictated, first of all, by our
desire to present a basic course. We do not believe that the apprentice logician
should commence anywhere else than with a detailed study of the first-order pred-
icate calculus; this is the context that we have set for ourselves (Chapter 3). Starting
from this, we wished to present the three areas (set theory, model theory, recursive
function theory and decidability) that seem to us to be the most important. Histor-
ically speaking, they certainly are. They also are because the ‘grand’ theorems of
logic are all found there. Finally, it is our opinion that familiarity with these three
areas is an indispensable prerequisite for anyone who is interested in any other
area of mathematical logic. Having chosen this outline, we still had the freedom to
modify the relative importance given to these three axes. In this matter, we cannot
deny that we allowed our personal preferences to guide us; it is clear that Chapter 8
could just as well have been devoted to something other than model theory.

These lines were drafted only after the book that follows was written. We think
that they should be read only after it has been studied. As we have already pointed
out, we can only truly speak about an activity, describe it (formalize it!), once we
have acquired a certain familiarity with it.

Until then.



1 Propositional calculus

Propositional calculus is the study of the propositional connectives; these are
operators on statements or on formulas. First of all there is negation, which we
denote by the symbol — which is placed in front of a formula. T he other connectives
are placed between two formulas: we will consider conjunction (‘and’, denoted
by A), disjunction (‘or’, denoted by V), implication (=), and equivalence { < ).
Thus, for example, from two statements A and B, it is possible to form their
conjunction: this is another statement that is true if and only if A is true and B is
true.

The first thing we do is to construct purely formal objects that we will call propo-
sitional formulas, or, more simply in this chapter, formulas. As building blocks we
will use propositional variables which intuitively represent elementary proposi-
tions, and we assemble them using the connectives mentioned above. Initially,
formulas appear as suitably assembled sequences o f symbols. In Section 1.1, we
will present precise rules for their construction and means for recovering the
method by which a given formula was constructed, which makes it possible for the
formula to be read. All these formal considerations constitute what we call syntax.

This formal construction is obviously not arbitrary. We will subsequently have
to give meaning to these formulas. This is the purpose of Section 1.2. If, for each
elementary proposition appearing in a formula F, we know whether it is true or
not (we speak of the truth value of the proposition), we must be able to decide
whether F itself is true or not. For instance, we will say that A = B is true in
three of the four possible cases: when A and B are both true, when A and B
are both false, and when A is false and B is true. Notice here the difference from
common usage: for example, in everyday language and even in mathematics texts,
the phrase ‘A implies B’ suggests a causal relationship which, in our context, does
not exist at all.

Thereby we arrive at the important notions of this chapter: the concept of tau-
tology (this is a formula that is true regardless of the truth values assigned to the
propositional variables) and the notion of logical equivalence (two formulas are
logically equivalent if they receive the same truth value regardless of the truth
values assigned to the propositional variables).
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In Section 1.3, we see that a formula is always logically equivalent to a formula
that can be written in a very particular form (disjunctive or conjunctive normal
form) while Section 1.4 is devoted to the interpolation theorem and the definability
theorem whose full import will be appreciated when they are generalized to the
predicate calculus (in Chapter 8). In the last section of this chapter, the compact-
ness theorem is particularly important and it too will be generalized, in Chapter 3.
It asserts that if it is impossible to assign truth values to propositional variables
in a way that makes all the formulas in some infinite set X true, then there is some
finite subset of X for which it is also impossible to do this.

1.1 Syntax

1.1.1 Propositional formulas

The preliminary section called ‘Notes to the reader’ contains, among other items,
some general facts about words on an alphabet. The student who is not familiar
with these notions should read that section first.

Let us consider a non-empty set P, finite or infinite, which we will call the set
of propositional variables. The elements of P will usually be denoted by capital
letters of the alphabet, possibly bearing subscripts.

[n addition, we allow ourselves the following five symbols:

- VA =

which we read respectively as: ‘not’, ‘or’, ‘and’, ‘implies’ and ‘is equivalent to’
and which we call symbols for propositional connectives. We assume that they
are not elements of P.

The symbols —~, Vv, A, =, & are respectively called: the symbol for negation,
the symbol for dis junction, the symbol for conjunction, the symbol for implica-
tion and the symbol for equivalence.

In view of the roles that will be assigned to them (see Definition 1.2 below), we
say that the symbol — is unary (or has one place) and that the other four symbols
for connectives are binary (or have two places).

Finally, we consider the following two symbols:

) (

respectively called the closing parenthesis and the opening parenthesis, distinct
from the symbols for the connectives and also not belonging to P.

Certain finite sequences composed o f propositional variables, symbols for propo-
sitional connectives, and parentheses will be called propositional formulas (or
propositions). Propositional formulas are thus words formed with the following
alphabet:

A=PU]— V,A, =, < }U{), (].
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Remark 1.1 Fromthe very first sentences in this chapter, we can already sense
one of the difficulties which, unless we are careful, will confront us continually
during our apprenticeship with the basic notions of formal logic: certain words
and certain symbols are both used in everyday mathematical language (which we
will call the metalanguage) and also appear in the various formal languages that
are the principal objects of our study: for example, the word ‘implies’ and the
symbol =, which, to say the least, arise frequently in all mathematical discourse,
are used here to denote a precise mathematical object: a symbol for one of the
connectives. We will attempt, insofar as is possible, to eliminate from our meta-
language any word or symbol which is used in a formal language. It would none
the less be difficult to renounce altogether in our discourse the use of words such
as ‘and’, ‘or’, ‘not’ or parentheses. (This very sentence illustrates the fact clearly
enough.) This is why we wish to call the reader’s attention to this problem right
from the beginning and we invite the reader to be constantly alert to the distinction
between a formal language and the metalanguage. (The same problem will arise
again in Chapter 3 with the symbols for the quantifiers.)

As stated in ‘Notes to the Reader’, we will identify, by convention, the elements
of A with the corresponding words of length 1 in YW(A). In particular, P will be
considered a subset of YW(A).

Definition 1.2 The set F of propositional formulas constructed from P is the
smallest subset of VW(A) which

e includes P;
e whenever it contains the word F, it also contains the word —F';

e whenever it contains the words F and G, it also contains the words

(FAG), (FVG), (F=G) and (F < G).

In other words, F is the smallest subset of WW(A) which includes P and which
is closed under the operations:

F — —F,
(F, G) = (F NG),
(F,G)w+— (FvVvG),
(F,G)— (F = G),
(F,G)+— (F < G).

Observe that there is at least one subset of YW(A) which has these properties,
namely W(A) itself. The set F is the intersection of all the subsets of WW(.A) that
have these properties.
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Here are examples of formulas (A, B, and C are elements of P):

A
(A= (B & A))
(—A = A)
—1(A = A)
(((AA(CB="A)A(BvV—-C0)) = (C = —A)).

And here are words that are not formulas:

AAB
—(A)
(A= BVvC()
A= B/~_C
(AN B AC)
VA(A v —A)
(AANB=>C)V(—CA=>(BAOC)A(—AVDB)).

Later we will agree to certain abuses in the writing of formulas: for example,
A N B could be accepted in some cases as an abbreviation for the formula (A A B).
Obviously, this changes nothing in the definition above; we are simply giving
ourselves several ways of representing the same object: if A A B is a permitted
way to write the formula (A A B), the length of A A B is none the less equal to
5. Observe in passing that the notion of the length of a formula is already defined
since we have defined the length of any word on any alphabelt. (See the Notes to
the Reader.)

It is possible to give a more explicit description of the set F: to do this, we will
define, by induction, a sequence (F,),en Of subsets of YW(A). We set

Fo=P
and, for each n,

Observe that the sequence (F) ,eN 1s increasing (for n < m, we have F,, C F,).
Theorem 1.3 F = |, ey Fr-

Proof [t is clear that | J,.y Fn includes P and is closed under the operations
indicated above (if two words F' and G belong to F,, for a certain integer #, then

-F, (FAG), (FVvG), (F=G)and (F & G)

belong to Fp+1. [t follows that |, . F» includes the smallest set having these
properties, namely, F.

To obtain the reverse inclusion, we show by induction that for each integer n,
we have 7, € F. Thisis true by definition if n = 0, and if we assume (thisis the
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induction hypothesis) 7, € F, we also have ;4| € F according to the definition
of F¢4+; and the closure properties of F. O

We thus have two equivalent definitions of the set of propositional formulas. We
often speak of ‘definition from above’ in the first case and ‘definition from below’
for the one that follows from the previous theorem.

At several places in this book, we will encounter this type of definition, said to be
inductive or by induction (see, for example, the set of terms or the set of formulas
of the predicate calculus in Chapter 3, or again the set of recursive functions in
Chapter 5). In each case, we are concerned with defining the smallest subset of a
fixed set E that includes a given subset and that is closed under certain operations
defined on E (this is definition from above). We always have an equivalent defi-
nition from below: this consists in constructing the set that we wish to define one
level at a time; the subset given initially is the lowest level and the elements of
level n + 1 are defined to be the images under the given operations of the elements
from the lower levels. The set to be defined is then the union of a sequence of
subsets, indexed by the set of natural numbers. In all instances of sets defined by
induction that we will meet in the future, as well as in the method of proof by
induction described below, we will encounter the notion of height.

Definition 1.4 The height of a formula F € F is the least integer n such that
F € F,.Itis denoted by h[F].

For example, if A and B are propositional variables, we have
hiA]=0; hl(AVB)A(B= A)]=2; h[-=——==4]=5.

Note that F, is the set of formulas of height less than or equal to n, and that
Fn+1 — Fn is the set of formulas of height exactly n + 1.
It also follows from the definition that for all formulas F and G € F, we have:

h[-F] <h[F]4+1 and h[(F a G)] < sup(h[F], h[G]) + 1,

where « denotes a n arbitrary symbol for a binary connective.
(In fact, we will see, after Theorem 1.12, that we can replace these inequalities
by equalities).

1.1.2 Proofs by induction on the set of formulas

Suppose we wish to show that a certain property X' (F') is satisfied by every formula
F € F.Todo this we can use an argument by induction (in the usual sense) on the
height of F: so we would be led first to show that X (F) is true for every formula
F belonging to Fq, and afterwards that if X'(F) is true for every F € F,, then it
is also true forevery F € F,4+1 (and thus, for any n).

This style of argument is associated with definition ‘from below’ of the set of
formulas.



12 PROPOSITIONAL CALCULUS

Itis more practical and more natural, however, to take the first definition as our
point of departure and proceed as follows. The initial step is the same: we show
that X' (F) is satisfied for all formulas belonging to P (that is, to Fg); the induction
step consists in proving, on the one hand, that if the formula F satisfies the property
X, then so does the formula — F, and on the other hand, that if F" and G satisfy X/,
then so do the formulas (F A G), (F Vv G), (F = G), and (F & G).

As we see, the notion of the height of formulas does not appear explicitly in this
style of argument, nor does any other natural number.

Before establishing the correctness of this method of proof (which is the purpose
of Lemma 1.7) let us give an initial example of its use:

Theorem 1.5 The height of a formula is always strictly less than its length.

Proof In this case, the property X (F) is: h[F] < Ig[F].

If F is a propositional variable, we have h[F] = 0 and Ig[F] = 1; the inequal-
ity is verified. Let us now pass to the induction step. Suppose that a formula F
satisfies h[ F] < Ig| F]; we then have

h[~F]<h[F]+ 1 <Ig[F]+ 1= Ig[—F],

which shows that X'(—F)is true; and now suppose that F and G are formulas that
satisfy h[F] < Ig[F] and h[G] < Ig[G]; then, where « is any symbol for a binary
connective, we have

h[(Fa G)] < sup(hlF], h[G]) + 1 < sup(Ig[F], Ig[G]) + 1
< Ig[F]+Ig[G]+ 3 = Ig[(F « G)],

which means that X' (F « G) is satisfied and the proof is finished. |

As a consequence of this property, observe that there are no formulas of length O
(which is one of the ways to show that the empty word is not a formula!) and that
the only formulas of length 1 are the propositional variables.

The two lemmas that follow allow us to justify the method that we just described
and used. The first is a variant of it that we will then easily modify below.

Consider a property V(W) of an arbitrary word W € W(A) (which need not
necessarily be a formula). Here is a sufficient condition thatevery formula satisfies
the property -

Lemma 1.6 Suppose, on the one hand, that Y (W) is true for every word W € P,
and, on the other hand, that for any words W and V, if Y(W) and Y(V) are
true, then

V(—F), Y(F ANG), Y(FVG), YIF=G), and Y(F € G)

are also true. Under these conditions, ) (F) is true for every formula F .

Proof Let Z be the set of words that have property V:
Z={WeWA): YW}
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The hypotheses of the lemma indicate that Z includes P and that it is closed
with respect to the operations:

Wi =W, (W, V) > (WAV), (W,V)r» (WV V),
W, V)b (W= V)and (W, V)~ (W & V).

It follows, according to Definition 1.2, that  is included in Z, which means that
every element of .F satisfies the property ). ]

Let us now consider the case where we have a property X (F) which is only
defined for formulas and not for arbitrary words. (This is the case, for example,
with the property: h[ F] < IgQ[F], since the notion of height is defined only for
elements of F.)

Lemma 1.7 Suppose, ontheonehand, that X (F) istrue foreveryformula F € P,
and, on the other hand that, for all formulas F and G, if X (F) and X(G) are
true, then

X(—=F), X(FNG), X(FVvG), X(F=G), and X(F & G)

are also true. Under these conditions, X (F) is true for every formula F .

Proof It suffices to consider the property Y(W): ‘W € F and X(W)’, whichis
defined for every word W € W(A). Since F includes P and is closed under the
operations

Wis =W, W, V)i WAV), W, V)= (WVV),
(W, V)= (W= V) and (W, V) > (W & V),
we see immediately thatifthe property X satisfies the stated hypotheses, then the

property Y satisfies those of the preceding lemma. We conclude that Y( F) is true
for every formula F and hence the same holds for X'(F). ]

1.1.3 The decomposition tree of a formula

Among the first examples of formulas that we gave earlier was the following
word W:

(((AA(mB = —A) A(—=B vV —C)) = (C = —A)).

The reader, who justifiably has no intention to take us on faith, should be con-
vinced by what follows that this word is indeed a formula:
By setting
Wo= (A A (=B = —A) A(—B vV —C))

and
W) = (C = —A),

we first observe that W can be written as (Wg = Wi).
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Then, after setting

Woo = (A A (—B = —A)),
Wor = (=B v =(),

Wio = C,

Wi = —-A,

we can write Wo = (Woo A Wop) and Wy = (Wi = Wi).
Continuing in this way, we will be led successively to set

Wooo = A W1 = (—B = —A)
Woio =—B Woyi = —C
Win=A Woolo = =B

Wooir = —A Woioo = B

Worio = C Wooio0 = B

Wooiio = A

in such a way that

Woo = (Wooo A Woot), Wor = (Woio v Wort), Wit = =Who,
Woan = (Wooio0 = Woor1), Woro = —=Woioo, Worir = —Wa o,
Wooto = =Wooi00 and Woor1 = ~Woolio-

This shows that the word W was obtainedb y starting from propositional variables
and by applying, a finite number of times, operations allowed in the definition of
the set of formulas. It follows that W is a formula.

We can represent the preceding decomposition in the form of a tree:

w
/ - TN
Wo Wl
N *
/ N VN
Wao Wa Wio Wi
/\ V L] -
a N\ N |
Wooo Won Woio Woir Wi
. = : - .
/ \ | |
Woeio Woon Woioo Wo11o
- - . .
| |
Wooi00 Woo110
® f

The root of the tree (the formula W) is at the top and the branches ‘grow’ toward
the bottom. Each node of the tree is a word V (which is always a formula if the
word at the root of the tree is a formula). Three cases can arise: V is a propositional



SYNTAX 15

variable and, in this case, willbe an extremity o f the tree (the words corresponding
to this situation are identified by a black dot in our figure above); V can be written
as =V’ in which case there is a single branch starting from V and ending at the
level immediately below at the node V’; or finally, V can be written as (V' « V")
(where « isa symbol fora binary connective)andin thiscasethere aretwobranches
starting from V and ending at the level immediately below at the two nodes V" and
V” (in this case the appropriate symbol for a binary connective has been placed in
the figure between the two branches).

The decomposition that we have chosen for our formula shows thatit belongs to
Fs. Its height is therefore less than or equal to 5. At the moment, nothing allows
us to claim that its height is exactly 5. Might we not, in fact, imagine a second
way of decomposing this formula which would lead to a shorter tree? All we can
say (and this is thanks to Theorem 1.3) is that for every formula F' € F, there
is at least one decomposition of the type we have just exhibited. The uniqueness
will be established in the next theorem, for which we first require a few lemmas
which, with the exception of Lemma 1.10. will be proved by induction on the set
of formulas.

1.1.4 The unique decomposition theorem

For each word W € W(A), let us agree to denote by o[W] (respectively: c[W])
the number of opening (respectively: closing) parentheses that occur in W.

Lemma 1.8 [In any formula, the number of opening parentheses is equal to the
number of closing parentheses.

Proof We argue by induction on the formula F.

e Forany formula F € P,wehave O[F] =c[F] = 0.

e For any formula FF € F such that O[F] = C[F], since o[-:F] = O[F] and
c[—F] = c[F], we have o[—~F] = c[—~F].

e For all formulas F and G belonging to F such that o[ F] = c[F] and 0[G] =
c[G], and where « is an arbitrary symbol for a binary connective, we have

o[(Fa G)] =o[F]+ o[G]+! =c[F]+c[G]+]1 = c[(F a G)].
Thus, o[ F] = c[F] for any propositional formula F. |

Lemma 1.9 Foranyformula F € F and any word W € W(A), if W is an initial
segment of F, then o[W] > c[W].

Proof The induction is on the formula F.

e If F € P, thenforevery initial segment W of F', we have o[W] =c[W] =0,
hence o[W] > c[W].

e Let F beaformula such that forevery initial segment W of F,wehave o[W] >
c[W]. Consider an initial segment V of —F: if V is the empty word, then
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o[V] =c[V] = 0; if V is not the empty word, then there is an initial segment
W of F suchthatV = —=-W;wehave o[ V] = o[W]andc[V] = c[W], and since
o[W] > c[W] (by the induction hypothesis), we conclude that o[V ] > c[V].

e Let F and G betwo formulas all of whose initial segments have at least as many
opening parentheses as closing parentheses, and let « be a symbol for a binary
connective. Set H = (F o G). Let V be an initial segment of H. Four cases
can arise:

x* either V = J: in this case, o[V ] = c[V] = (;

* orV =(W (where W isaninitial segment of F'):
theno[V] =0[W]+ 1andc[V] =c[W], and since o[W] > c[W] (by the
induction hypothesis), we conclude that o] V] > c[V];

x orV=(FuakK (where K is an initial segment of G):
theno[V] =0[F]+ 0[K]+ 1 andc[V] =C[F]+C[K]; butOo[F] = C[F]
(by Lemma 1.8) and O[K] > c[K] (by the induction hypothesis), which
allows us to conclude once more that o[V} > c[V];

* or V = H:in which case o[V] > c[V] (by Lemma 1.8).
So we see that in all cases, o[V ] > c|V]. u

Lemma 1.10 For any formula F € F whose first symbol is an opening paren-
thesis and for every word W € W(A) which is a proper initial segment of F,
we have

o[W] > c[W]. (strict inequality)

Proof For once, the proof is not by induction!

Consider a formula F' which can be written as F = (G ¢ H) where G and H are
arbitrary formulas and « is a symbol for a binary connective. Let W be a proper
initial segment of F. There are two possible cases.

e cither W = (K (where K is an (arbitrary) initial segment of G);
in this case, o[W] = O[K] + 1 and c[W] = c[K], and since O[K] > C| K] (by
Lemma 1.9), we conclude that o[W] > c[W];

e orW=(GalL (where L is an initial segment of H);
inthiscase,0O[W] = o[G]+0O[L]+1 andc[W] = c[G]+C[L];buto{G] = c[G]
(by Lemma 1.8 ) and 0| L] > c[Z ] (by Lemma 1.9), which leads once again to
o[W] > c[W]. ]

Lemma 1.11 For any formula F € F and for any word W € W(A), if W is a
proper initial segment of F then W is not a formula.

Proof Here too, the induction is on the formula F.

e A propositional variable does not have any proper initial segments.

e If F is a formula none of whose proper initial segments is a formula, and if
V is a proper initial segment of = F', then either V == and is not a formula
(the only formulas of length 1 are the elements of P), or else V =—-W where
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W is a proper initial segment of F'; in this case, W is not a formula (by the
induction hypothesis) noris V = -:W, Observe that, contrary to what we might
have been tempted to believe, the fact that

‘9f W is not a formula, then neither i1s =W’

is not a trivial application of the definition of the set of formulas, but requires a
proof. Here itis: if —W is aformula, examination of its first symbol shows that it
is neither a propositional variable nor a formula of the type (H « K'); therefore
(by Theorem 1.3) there exists at least one formula G such that -W =--G; if the
words =W and —G are identical, then so also are the words W and G, which
proves that W is a formula.

e let F and G be two arbitrary formulas, « a symbol fora binary connective, and
V aproperinitial segmentof (F ¢ G).Wehave o[V] > c¢[V](by Lemma 1.10).
We conclude that V is not a formula (by Lemma 1.8). Note that it was not
necessary, in this part of the argument by induction, to assume that the proper
initial segments of F and G are not formulas. |

Theorem 1.12 (Unique decomposition) Forany formula F € F, one and only
one of the following three cases can arise:

Case I: F € P.

Case 2: there is a unique formula G such that F = —G.

Case 3: there is a unique symbol for a binary connective o and a unique pair of
formulas (G, H) € F% suchthat F = (G« H).

Proof Itisobvious that these three cases are mutually exclusive: we areincase |,
in case 2, orin case 3 (still subject to proving uniqueness in each of these cases)
according as the first symbol of F'is anelementof P, the symbol —, or the symbol (
(these are, by virtue of Theorem 1.3, the only possibilities).

What we know already (Theorem 1.3) is this: either ' € P, or else there is at
least one formula G such that FF = =G, or else there is at least one symbol for a
binary connective @ and formulas G and H such that F = (G « H).

So it only remains for us to prove the uniqueness of the decomposition in cases
2 and 3.

This is more or less obvious forcase 2:if F = -G = —-G’, then G = G'.

As for case 3, suppose that there exist formulas G, H, K, and L and symbols
for binary connectives @ and 8 such that F = (G o H) = (K B8 L). We conclude
that the two words G « H and K B L are equal, which shows that one of the two
formulas G and K is an initial segment of the other. By Lemma 1.11, this cannot
be a proper initial segment. Since the empty word is not a formula, we conclude
that G = K. From this, it follows that the words « H and B L are equal. The
symbols o and 8 are therefore identical, as well as the formulas H and L. ]

As the first application of the unique decomposition theorem, we have the unique-
ness of the decomposition tree of a formula, as described above.
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We may also conclude from it (as announced at the end of Subsection 1.1.1) that
for all formulas F and G belonging to F, we have

h[=F]=h[F]+1 and h[(F « G)] = sup(h[F], h[G]) + 1

for any symbol for a binary connective «.

For example, let us prove the second equality (the other one is treated in an
exactly analogous fashion): let H denote the formula (F « G). Since this is not an
element of P, there exists a (unique) integer n such thath[H] = n+ 1. This means
that H € F,4+) and H ¢ F,. By the definition of #,4+) and because H begins
with an opening parenthesis, we conclude that there exist two formulas H; and
H?2 € F, and a symbol for a binary connective 8 such that H = (H; 8 H). The
unique decomposition theorem then shows that 8 = «, H) = F, and H, = G.
Consequently, F' and G belong to F,,. If there were some integer m < n such that
F and G belonged to F,,, the formula (F « G) would belong to F,»+1, hence also
to Fn, which is false. It follows that at least one of the formulas ' and G has height
n, and so: h[(F « G)] = sup(h[F], h[G]) + 1.

1.1.5 Definitions by induction on the set of formulas

Just as we can give proofs by induction on the set of formulas, we can provide
definitions by induction of functions or of relations whose domain is the set
of formulas. The principle is as follows: given an arbitrary set E, to define a
mapping ¢ from F into E, it suffices to give, first of all, the values of ¢ on P,
and then to give rules which allow us, for all formulas F' and G, to determine the
values of

P(=F). ¢((F A G)), ¢((F Vv G)), ¢((F = G)) and ¢((F < G))

from the values of (F') and ¢ (G). Let us be more precise:

Lemma 1.13 Let ¢g be a mapping from P into E, f a mapping from E into
E, and g, h, i, and j four mappings from E? into E. Then there exists a unique
mapping ¢ from F into E satisfying the following conditions:

e the restriction of ¢ to P is ¢o;

e foranyformula F € F, ¢(—F) =f ($(F));
e forall formulas F and G € F,

¢((F ANG)) =g@(F), ¢(G)) ¢((F v G)) = h(¢(F), 9(G))
$((F = G)) = i(@(F),$(G)) and p((F & G)) = j(¢(F),9(G))

Proof The uniqueness of ¢ is easily proved by induction on the set of formulas
using the unique decomposition theorem. The existence of ¢, which is intuitively
clear, is proved with an elementary argument from set theory that we will not
present here. ]
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Here is an initial example of definition by induction, for the concept of sub-
formula of a propositional formula:

Definition 1.14 With each formula F € F we associate a subset sf(F) of F,
called the set o f sub-formulas of F, which is defined by induction according to
the following conditions:

e ifFeP,

sf(F) = {F};

o i F= —(C,

sf(F) = sf(G) U {F}:

o if F=(Ga H)where a € {A,V, =, &},
sf(F) = sf(G) Usf(H) U {F}.

[t is easy to verify that the sub-formulas of a formula are exactly those that appear
as nodes in its decomposition tree.

1.1.6 Substitutions in a propositional formula

Let F be a formula in F and let Ay, Ao, ..., An be propositional variables from
P that are pairwise distinct (this hypothesis is essential). We will use the notation
F[A;, Ay, ..., Ap] for F when we wish to emphasize that the elements of P that
occur at least once in F are among Aj, Ay, ..., An. For example, the formula
F = (A = (B Vv A)) could be written as F[A, B], but also as F[A, B, C, D] if
it is useful to do so in a given context.

If we are given a formula F[Aq, Ap,...,A,, By, By, ..., By] and n formu-
las G1,Go, ..., G,, consider the word obtained by substituting the formula G
(respectively: Go, ..., Gy) forthe variable A, (respectively: A,, ..., Ap) ateach
occurrence of these in F. This word will be denoted by Fg,/4,.G,/4,,....G./Ax

(read this as ‘ F sub G replaces A, G2 replaces Aj, et cetera, G, replaces A,’),

but we will also denote itby F[G,, G2, ..., G, By, By, ..., B,,] despite the fact
that this might cause some delicate problems.

Forexample,if F = F[A, B]istheformula (A = (BV A))and G isthe formula
(B = A),then Fga is the word ((B = A) = (B v (B = A)) which we could
denote by F[G, B] or equally well by F[(B = A), B]. If we then consider a
propositional variable C (distinct from A and B) and the formula H = C, then
Fgya is the word (C = (B Vv C)), which could be written, according to our
conventions, as F[C, B]. A nasty ambiguity then arises, since it is unclear how to
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determine from the equalities
F[A,B]=(A= (BV A)) and F[C, Bl = (C = (B Vv C))

which of these two formulas is the formula F.

Nevertheless, the notation F[G), G2,...,Gp, By, B2, ..., Bm] is extremely
practical and, most of the time, perfectly clear. That is why we will permit our-
selves to use it, despite the danger we have pointed out, by limiting its use to
circumstances where there can be no ambiguity.

In fact we could give a definition of Fg,/4,,G2/A,,...G,/A, by induction on
the formula F (where G,G2,....G, € F and A, Ay, ..., A, € P remain
fixed):

e if F € P,then

_ )Gk ifF=A( <k < n);
FG1/41.6o/ A0 Gut 8 = F' if F @ (AL, Ag, ..., An).

e if F = —(G, then

EG/A: Gal A, ...Gal i = TOG11AL Gl s, ... Bl As

o if F=(G«a H), then

FGi/A1.G2/As.....GafAn = (G GJA1.Gy/As,...Gu/A, @ HG 1A).Gy/A,.....Gu/Ay)
for all formulas G and H and symbol for a binary connective «.

Inthe examples that we provided, w e were able to observe that the word obtained
after substituting formulas for propositional variables in a formula was, in every
case, itself a formula. There is nothing surprising in this:

Theorem 1.15 Given an integer n, formulas F, Gi. G2, ..., Ga, and proposi-
tional variables Ay, A, ..., An, the word ¥G,/A,,G,/A,..... G,/A, IS a formula.

Proof Letting Gy, G2,...,Gn € F and Ay, Ay, ..., Ay € P remain fixed, we
prove this by induction on the formula F.

e if FeP,FG,/A1.G2/A2....Gn/As 1sequalto Gy If F = Ag (1 <k < n)andto

Fif F¢{A;, Aa, ..., Ap}; in both cases this is a formula.

e if F = —G, and if we suppose that G¢;,/4, G2/A,,....G, /4, 18 @ formula, then

FG,/A,.GyA,.....G, /A, » Which is the word — G G,/A,.Gy/A,.,....G, /4, . 1S again a
formula.

o if F = (G H) (wherex is asymbol fora binary connective) and if we suppose
that the words GG,/4,.G2/A;....G./A, and HG /A, .G2/A,....G,/A, are formulas,
then FG,/A,.G2/Az....Gu/An» Which is the word

(GGi/A1,G2/ A Gr) An @ HG [AI.Gy/As.....Gy 1AL

1s also a formula. [ ]
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Remark 1.16 It behooves us to insist on the fact that the formula

FG]/A],GZ/AQ ----- Gn/An

is the result of simultaneously substituting the formulas Gy, G2, ..., G, for the
variables A, Ay, ..., Ay in the formula F. A priori we would obtain a different
formula if we performed these substitutions one after another; moreover, the result
we obtain might depend on the order in which these substitutions were performed.

Let us take an example.
Set

F=(AANA), Gi=(A| V Ay and G, = (A] = Ajp).
We then have:

FG,/A,,Goya, = ((A1V A2) A (A} = A2));

whereas
[FG,/a16574, = (A1 V (A = A2)) A (A = A2));

and
[FG,/a,1G74, = (A1 V A2) A((AL V Az) = A2)).

We may also, in a given formula F, substitute a formula G for a sub-formula H
of F. The word that results from this operation is once again a formula. Although,
in practice, this type of substitution is very frequent, we will not introduce a special
notation for it and will not enter into details. Let us be satisfied with an example.
Suppose that

F=(((AAB)= (—"BA(A=C)) V(B & (B= (AV(0)))),
G=(A< (BvC))and
H=(—-BAA=0)).

Then, by substituting G for the sub-formula H in the formula F, we obtain the
formula

((AAB) == (A BVO))VB S B=AVO)).

1.2 Semantics
1.2.1 Assignments of truth values and truth tables

Definition 1.17 An assignment of truth values to P is a mapping from P into
the set {0, 1}.

Instead of ‘assignment of truth values’, some speak of a ‘valuation’, others of
an ‘evaluation’, or ‘distribution of truth values’.
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An assignment of truth values to P 1is therefore an element of the set
(0.1},

An assignment of truth values § € {0,1}” attributes, to each propositional
variable A, a value §(A) which is 0 or 1 (intuitively, false or true). Once this is
done, we will see that it is then possible, in one and only one way, to extend § to
the set of all propositional formulas while respecting the rules that agree, more or
less, with our intuition as suggested by the names we have given to the various
symbols for propositional connectives. Why ‘more or less’ ? Because, although it is
doubtful that anyone would be surprised that a formula F will receive the value 1 if
andonly if the formula —F receives the value 0, the decision to attribute the value
1 to the formula (F = G) when the formulas F and G each have the value 0 will
perhaps give rise to more uneasiness (at least at first sight). One way to dissipate
this uneasiness is to ask ourselves under what circumstances the formula (F = G)
could be considered false: we would probably agree that this would only happen
in the case where F were true without G being true, which leads us to attribute
the value 1to (F = G) in the other three possible cases. The difficulty no doubt
arises from the fact that, in mathematical arguments, we have the impression that
we practically never have to consider situations of the type ‘false implies false’
or ‘false implies true’. But this impression is misleading. No one will contest, for
example, that the statement ‘for every natural number n, n divisible by 4 implies
n is even’ is true. But an inevitable consequence of this is that the following two
statements are true:

‘1 divisible by 4 implies 1 is even’;

‘2 divisible by 4 implies 2 is even’.

The situations ‘false implies false’ and ‘false implies true’ were already present
in our initial statement; let us simply say that we don’t really care.

Anotherremark is called for here. If we took a poll among mathematicians asking
them whether the statement ‘a divisible by 3 implies #» odd’ is true or false, the
second response would win overwhelmingly. For any mathematician would think
to have read or heard the statement ‘every natural number divisible by 3 is odd’
and would legitimately respond: it’s false. This is because standard mathematical
usage considers that statements having thef ormof an implication are automatically
accompanied by a universal quantifier that is taken for granted.

There is no shortage of examples (the statement

Ve >035 >0(x —yl<éd=1fx)—- f(y)l <e€)

is often taken as the definition of uniform continuity of a function f; in this context,
the quantifiers ¥x and Vy, which should be placed between ‘36 > 0’ and the first
opening parenthesis, are frequently omitted because they are considered to be
understood; this could explain the difficulty that certain students have when asked
to describe a function that is not uniformly continuous. . .). As for the question in
our poll, it makes no sense as we have stated it, until we know what the integer n is.
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And it suffices to replace n by 3, by 4 or by 5 for the statement to be true (it
will be, respectively, of type ‘true implies true’, ‘false implies false’, and ‘false
implies true’).

There is another difficulty concerning implication, which is that mathematicians
generally see in it a notion of causality, which propositional calculus absolutely
does not take into account. If P; and P; are two true statements, propositional
logic imposes the value true on the statement ‘ P, implies P,’. But a mathematician
will refuse, more often than not, to affirm that ‘P; implies P’ is true when the
statements P, and P3 have ‘nothing to do’ with one another. Is it true that Rolle’s
theoremimpliesthe Pythagorean theorem? Those who do not dismiss this question
as absurd will generally respond no, because to say yes suggests that they are in
position to provide a proof of the Pythagorean theorem in which Rolle’s theorem
is actually involved.

Though the conflicts between intuition or mathematical usage and the definitions
that we are about to give arise especially with implication, the other connectives
may also make a modest contribution to this (disjunction is often interpreted as
exclusive (A or B but not both) whereas our v will not be).

In propositional calculus, these kinds of questions are not to be considered. We
will be content to perform very simple operations on two objects: 0 and 1, and our
only reference will be to the definitions of these operations, i.e. to what we will
later call the truth tables.

Let it be perfectly clear that the intuition we referred to above is exclusively
mathematical intuition. Our concern is not at all toinvoke ‘everyday’ logic (the one
thatis known as ‘common sense’). Mathematiciansmake nopretence of possessing
auniversal mode of reasoning. It is hard toresist applying mathematical reasoning
to situations outside mathematics, seduced as we are by the rigour of this reasoning,
when we discover it. But the result is not what we had hoped: we soon face the
fact that human problems do not allow themselves to be resolved by mathematical
logic. As for the supposed pedagogical virtues of giving ‘real-life examples’, they
are the opposite of what some may expect from them. This type of approach does
not, in any determining way, make the apprenticeship of the rules of mathematical
logic any easier, but it is very useful for teaching us prudence, and even humility:
to learn mathematical reasoning, let us study mathematics. In fact, we can ask
ourselves whether, to illuswrate that a formula involving implication is equivalent
to its contrapositive, it is more convincing to take the very celebrated example ‘if
it is raining I take my umbrella’ compared to ‘if I do not take my umbrella it is not
raining’ or the example ‘if # is prime then n is odd’ compared to ‘if » is even then
n is not prime’. Indeed. it suffices to perform the two experiments to conclude that
the example of the umbrella immediately provokes, justifiably, a slew of objections.
It is not uninteresting to also note that the contrapositive of ‘if it is raining I take
my umbrella’ is most often stated in the form: ‘I do not take my umbrella, therefore
it is not raining’, which more closely resembles an ‘argued conjunction’ than an
implication. The application of mathematical logic to ‘everyday life’ has produced
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a choice collection of hilarious examples that the students of Daniel Lacombe know
well and which have attained a certain popularity among logicians:

e A father threatens his son: ‘if you are not quiet you will get a slap!’, and he
proceeds to administer the slap even though the child had immediately become
quiet; from the point of view of mathematical logic, this man is not at fault: the
truth table for = shows that, by becoming quiet, the child makes the implication
true regardless of the truth value of ‘you will geta slap’. .. (a good father should
have said ‘you will get a slap if and only if you are not quiet’).

e Inviewoftautology no. 17 from Section 1.2.3, what should we think about the
equivalence between ‘if you are hungry, there is some meat in the fridge’ and
its contrapositive: ‘if there is no meat in the fridge, you are not hungry’?

e When a contest offers as its first prize ‘a new car or a cheque for $100000’,
why shouldn’t the winner claim both the car and the cheque, relying on the truth
table for disjunction?

As we see, all this no doubt has an amusing side, but it does not help us at
all in resolving exercises from mathematics in general or mathematical logic in
particular. We will therefore leave our umbrella in the closet and remain in the
world of mathematics, where there is already enough to do.

Theorem 1.18 For any assignment of truth values 5 € {0, l}P , there exists a
uniquemap § : F = {0, 1} which agrees with § on P (i.e. it extends 8) and which
satisfies the following properties:

(1) forany formula F,
8(—F) = lifand only if ( F) = 0;

(2) forall formulas F and G,

S(FAG) =1ifandonly if §(F) =68(G) =1
(3) forall formulas F and G,

8(FVv G) =0ifand only if §(F) = §(G) = 0;
(4) forall formulas F and G,

8(F = G)=0ifandonly if§(F) = 1and §(G) = 0;
(5) forall formulas F and G,
8(F & G) = 1ifand only if §(F) = 8(G).

Proof To simplify the notation, let us observe right away that conditions (1) to
(5) can be expressed using the operations of addition and multiplication on the
two-element field Z /27, with which we can naturally identif'y the set {0, 1}. These
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conditions then become equivalent to:
for all formulas F and G:

(i)Y S8(=F) =1+68(F);

(ii") 8((F A G)) = 8(F) 8(G);

(iii) 8((F v G)) =68(F) + 8(G) + 8(F) §(G)
(iv) S((F = G)) =1+ 8(F) +8(F)8(G);
(V) SUF < G)=1+6(F)+35(G).

(The proof is immediate.) ~
We see that the function § is defined by induction on the set of formulas, which is

what guarantees its existence and uniqueness by Lemma 1.13; here, the functions
f, & h,i,and j are defined on Z/27Z by: forall x and y,

f)=14+x, g(x,y)=xy, h(x,y) = x +y+xy,
i(x,y)=1+x+xy and j(x,y) =14 x + y. n

We should point out that identifying {0, 1} with Z/27Z is extremely practical and
will be used in what follows.

We can recapitulate conditions (i’) to (V') above in tables which we call the
truth tables for negation, for conjunction, for disjunction, for implication and for

equivalence:
F G (FAG) F G (FvG)

F —F 0 0 0 0 0 0
P 0 1 0 0 1 1
(1) (]) 1 0 0 1 0 1
- 1 1 1 1 1 1

F G (F= G) F G (F<G)

0 0 1 0 0 1

0 1 1 0 1 0

1 0 0 1 0 0

1 1 1 1 1 1

In practice, we will not really make the distinction between an assignment of
truth values and its extension to the set of formulas. We will speak of the ‘truth
value of the formula F under the assignment & and we will eventually forget the
bar over the § which would have indicated that we were dealing with the extension.

I{ Fis a formula and § is an assignment of truth values, we will say that F is
satisfied by &, or that § satisfies F, when §(F) = 1.
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Given a formula F' and an assignment of truth values §, the definition of the
extension & clearly points to a method for calculating & (F): this consists in calcu-
lating the values taken by § on the various sub-formulas of F, beginning with the
sub-formulas of height 1 (the values for those of height O being precisely what is
given), and applying the tables above as many times as necessary. For example, if
F is the formula ((A = B) = (B Vv (A & ())) and if § is an assignment of truth
values for which 6 (A) = 6(B) = 0 and §(C) = 1, then we have successively:

(A= B)=1;6(A=C)=0:8(BV(A<-C))=0ands(F)=0.

Of course, itcan happen that calculating the values of § for all the sub-formulas
of F is unnecessary: to see this, consider the formula

G=(A=({((BA—A)V (—-C A A) & (AV(A=B))))

and an assignment of truth values A for which A(A) = 0; we may conclude that
A(G) = 1 without bothering with the truth value of the sub-formula

((BA—A)V(CAA) < (AV (A= —B))).

In the examples that we have just examined, to calculate the truth value of a
formula, we only used the values taken by the assignment of truth values under
consideration on the variables that actually occur in the formula. It is clear that
this is always the case.

Lemma 1.19 For any formula F[Ay, A2, ..., An] (involving no propositional
variables other than A, A2, ..., An) and any assignments of truth values ) and
1 €{0,1}’ ifx and p agree on (A1, A2, ..., A}, then X(F) = i (F).

Proof The proofinvolves no difficulties. Itis done by induction on the formulas.
|

Let G[A, Ay, ..., A,] be a formula. To discover the set of truth values of G
(corresponding to the set of all possible assignments), we see that it is sufficient
to ‘forget’” momentarily the variables in P that do not occur in G, and to suppose
that the set of propositional variables is just {Aj, A2, ..., An}. There are then
only a finite number of assignments of truth values to consider: this is the number
of mappings from {A}, A2, ..., A} into {0, 1}, namely 2" (recall that the nota-
tion G[A|, A2, ..., An] presumes that the variables A; are pairwise distinct). We
can identify each mapping § from {A, A2, ..., An} into {0, 1} with the n-tuple
(6(A1),6(A2),...,6(An)) € {0, 1} and place the set of truth values taken by G
into a tableau in which each row would correspond to one of the 2" n-tuples and
would contain the corresponding truth value of G. Such a tableau, which could
also contain the truth values of the sub-formulas of G, will be called the truth
table of the formula G. Ultimately, this is nothing more than the table of values
of a certain mapping from {0, 1}" into {0, 1}.
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Let us return to the example given just above:
G=(A={((BA-A)V (~CAA)) s (AV (A= —B)))).

Set
H=(BA—=A),1=(-CAA),J=(A="B),
K=HVI, L=(AVvJ), M=(K <% L).

Then we have G = (A = M). Here is the truth table for G:

A BC-A—-B ~-CHI J KL MG
0O 0 0 1 1 1 0 01 0 1 0 1
0 0 1 1 1 O 001 01 0 1
01 0 1 0 1 1. 01 1 1 1 1
011 1 O 0 1 01 1 1 1 1
1 0 0 O 1 1 011 11 11
1 01 O 1 O 0 01 01 0 O
11 0 0 O 1 010 1 1 1 1
111 0 O O O OO OT1T OO

We should note that, with our conventions concerning the notation
G[Al ? Aza =y A!’l]a

we do not have uniqueness of the truth table for a formula (for example, the first
four columns of the table above could be considered as the truth table of the formula
= A). There is, nonetheless, a ‘minimal’ table for every formula, the one which
involves only those propositional variables that occur at least once in the formula.

However, even restricting ourselves to this notion of minimal table, there can
still be, for the same formula, many tables which differ in the order in which the
n-tuples from {0, 1}"* are presented.

It is reasonable to choose, once and for all, a particular order (among the 2! that
are possible) and to adopt it systematically. We have chosen the lexicographical
order (the ‘dictionary’ order): in the table, the n-tuple (a1, a2, ...,an) will be
placed ahead of (by, by, ..., b,) if, for the first subscript j € {1,2,...,n} for
whichaj #bj, we have aj < b;.

1nview of these remarks, we will allow ourselves to speak about ‘the’ truth table
of a formula.

1.2.2 Tautologies and logically equivalent formulas
Definition 1.20

o A tawtology is a formula that assumes the value 1 under every assignment of
truth values.
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e the notation for ‘F is a tautology’ is: +* F;
whereas ¥¥* F signifies: ‘F isnota tautology’.

e Given two formulas F and G, F is logically equivalent to G if and only ifthe
formula (F < G) is a tautology.

The notation for ‘ F is logically equivalent to G’ is: F ~ G.
Remark 1.21 The next two properties follow immediately from these definitions:

e For all formulas F and G, we have F ~ G if and only if for every assignment
of truth values § € {0, 1}", §(F) = §(G).

e The binary relation ~ is an equivalence relationon F.

The equivalence class of the formula F for the relation ~ is denoted by
cl(F).

A tautology is therefore a formula whose truth table contains only 1sin its last
column, in other words, a formula that is ‘always true’. Two logically equivalent
formulas are two formulas that are satisfied by exactly the same assignments of
truth values, which thus have the same truth table. Any formula logically equivalent
to a tautology is a tautology. Therefore the tautologies constitute one of the equiv-
alence classes for the relation ~, denoted by 1. The formulas whose negations are
tautologies (some call these antilogies, others antitautologies) constitute another
equivalence class, distinct from 1. denoted by 0: these are the formulas that are
‘always false’, which is to say that their truth tables contain only Os in the last
column.

When we do semantics, we argue ‘up to equivalence’. This will be justified by
the study of the set of equivalence classes for the equivalence relation ~, which
we will do a bit further on and will complete in Chapter 2.

Let us now examine the effect of substitutions on the truth values of formulas:

Theorem 1.22 Given an assignment of truth values, 8§, a natural number, n,
formulas F, Gy, G2, ..., Gn, and pairwise distinct propositional variables A\,
Aa, ..., Ay, let A be the assignment of truth values defined by

S(X) l:fXQ{Al, A2,---,An};

forall X € P, M(X) = §(G)) ifX=A; (1<i<n).

We then have

8(FG,/A).Go)Ag....Gu)Ay) = L(F).

Proof We argue by induction on the formula F':
e if Fisanelementof P, then:

either F ¢ {A1, A2, ..., Ap};in this case, FG,/A,.Gy/A7....Gu/An = F and

8(FG 1/ A).GylAn....CrfAn) = 8(F) = 8(F) = A(F) = A(F);



SEMANTICS 20
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by definition of A.

e If F = =G, and if we suppose that S(GG1/A1,Gz/Az,..‘,G,,/A,,) = A(G) (the
induction hypothesis), then

8(FG,/A1.G2) ... GulAR) = 8(—GG /A, G2/ AsseesGr]An)
=14+ 6(GGy/A,.Gy/Az,...Gu/A,)
=14+ X(G) = AM(—G) = A(F).

o If F= (G A H), and if we suppose (the induction hypothesis)

,,,,,

X B(HGI/A;,Gz/Az,-..,Gn/An)
= X(G) X(H) =X((G A H)) = X(F).
e Thecases F = (Gv H), F= (G = H),and F = (G & H) are treated

in a similar fashion without the slightest difficulty; indeed, we could really not
bother with them at all (for this, see Remark 1.33 later on). |

The next corollary follows immediately from the theorem:

Corollary 1.23 Forallformulas F, G, G2, . .., G, and pairwise distinct propo-
sitional variables Ay, Ay, ..., An, If F is a tautology, then so is the formula

FGi/A(.G2/As,....Gn/ Ay

Proof Given an arbitrary assignment of truth values §, by defining the assignment
A as in the previous theorem, we have

8(FG,/A,.Ga/Ag...Gn/A,) = A(F) =1,

since F is a tautology. ]

Another type of substitution also allows us to preserve logical equivalence of
formulas:

Theorem 1.24 Considera formula F, a sub-formula G of F and a formula H that
is logically equivalent to G. Then the formula F’, obtained from F by substituting
H for the sub-formula G, is logically equivalent to F.
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Proof We argue by induction on the formula F.

e If F € P, then, necessarily, G = F and F’ = H. We certainly have F’ ~ F.

o If F = —Fy, theneither G = F, F' = H, and we have F’ ~ F, orelse G is
a sub-formula of F| and, by the induction hypothesis, the formula F*, which
results from substituting H for G in F, is logically equivalent to F'|. Then the
formula F” is the formula =+F; it is therefore logically equivalent to F since,
for any assignment of truth values §, we have

S(F') =1+ 8(F)) =14 8(F;) = 8(—Fy) = 8(F).

e If F = (F| N F?), then there are three possibilities. Either G = F, F' = H,
andwehave F' ~ F.Orelse G is a sub-formula of F, and, by the induction
hypothesis, the formula F{, which results from substituting H for G in F, is
logically equivalent to F. Then the formula F’ is the formula (F| A F2); it is
logically equivalent to F because, for any assignment 8, we have

8(F") = 8(F)) 8(F2) = 8(F1) 8(F2) = 8((F1 A F2)) = 8(F).

The argument is strictly similar in the third case, when G is a sub-formula
of Fj.

Thecases F =(F) vV F), F =(F) = F2),and F = (Fy & F2) are treated in
an analogous fashion using relations (iii’) to (v’) from Theorem 1.18. ]

In practice, to show that a formula is a tautology, or that two formulas are
logically equivalent, we have several methods available. First of all, we could use
truth tables, but this is no longer viable once the number of variables exceeds 3 or
4. In certain cases, we could have recourse to what might be called ‘economical
truth tables’: this consists in discussing the values taken by a restricted number of
variables; in a way, we are treating several lines of the truth table in a single step.
Let us take an example: we will show that the following formula F' is a tautology:

(A= ((BVv-C)A—=(A= D))v((DAN—-E)V(AvV())).
By setting

H= (A= ((Bv—C)A—(A = D))) and
K={(DA=E)Vv(AvC)),

wehave FF = (HV K).Next, consider an assignment of truth values §.1f 5§ (A) = 0,
then we see thatg(H) = 1, thus also E(F) =1.If §(A) = 1, theng(AvC) =1,
hence §(K) =1 and 8§(F) = 1.

Just as well, we could invoke Corollary 1.23 and Theorem 1.24 by making use
of certain ‘basic’ tautologies (see the list in Section 1.2.3). For example, to show
that the formula G = ((—A Vv B) v -(A = B)) is a tautology, we first use the
fact that the formulas (—AV B) and (A = B) arelogically equivalent, which shows
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that G is logically equivalentto ( (A = B)Vv—(A = B)) (by Theorem 1.24), then
observe that this latter formula is obtained by substituting the formula (A = B)
for the variable A in the tautology (AvV—A), and is therefore itself a tautology (by
Corollary 1.23).

Needless to say, we willonlyrarely beled to present such an argument with this
degree of detail.

‘There are also purely syntactical methods which can be used to prove that a
formula is a tautology (see Chapter 4).

Finally, Exercise 14 shows how we can reduce all this to a simple calculation
involving polynomials.

1.2.3 Some tautologies

Here is a list of common tautologies (which are just so many exercises for the
reader, with no solutions given!):

(A, B and C denote propositional variables (but we may, by Corollary 1.23,
substitute arbitrary formulas in their place); T denotes an arbitrary tautology and
L the negation of T, which is to say a formula that always takes the value 0.)

(1) (ANA) & A)
(2) (Av A) & A)
(3) (AN B) & (BAA))
(4) ((Av B) & (BVv A))
(5) ((AA(BAC)) & ((AAB)AC))
(6) (Av(BvVv()s (AvBv(D))
(7) ((AA(BVC)) & ((AAB)V (AAC)))
8) ((AV(BAC))© (AvB)yn(Av()))
9 (AAN(AvV B) & A
(10) ((AV(AAB)) & A)
(1) (=(AvB) & (=AA—B))
(12) (=(AAB) & (-Av-=B))
(13) ((AAT) & A)
(14) ((Av 1) < A)
(15) ((AA L) e.l)
(16) (AvT)&T)
(17) (A= B) & (=B = —A))

These tautologies reflect important properties. Numbers (1) and (2) express the
idempotence of conjunction and dis junction, (3) and (4) their commutativity, (5)
and (6) their associativity, (7) and (8) the distributivity of each over the other.
But be careful! All this is taking place up to logical equivalence (which is to say
that these properties are really properties of operations on the set 7/ ~ of equiv-
alence classes for the relation ~ on F: for more details, refer to Exercise 1 from
Chapter 2). Numbers (9) and (10) are called the absorption laws. Numbers (11)
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and (12) express de Morgan’s laws (see Chapter 2 as well). Tautology number (13)
(respectively, number (14)) expresses that the class of tautologies 1 (respectively,
the class of antilogies 0) is the identity element for conjunction (respectively, for
disjunction). Number (15) (respectively, number (16)) expresses that the class 0
(respectively, the class 1) is the zero element for conjunction (respectively, for
disjunction). The formula (—B = —A) is called the contrapositive of (A = B)
and tautology number (17) expresses that every implicative formula is logically
equivalent to its contrapositive.
We will now continue our list with additional common tautologies:

(18) (A v —A)

(19) (A= A)

20) (A< A)

21) (/A= A)

22) (A= (AVv B))

23) ((AAB)= A)

(24) (((A= B) A A) = B)

(25) (((A = B) A—=B) = —A)

26) (A= A) = A)

27) (A= A) < A)

28) (—A = (A = B))

29) (AV (A = B))

(30) (A= (B = A))

(31) ((A=B)A(B=C)) = (A= ()
32) (A= B)Vv((C=>A)

(33) ((A= B)v(—A= B))

34) ((A= B) V(A= —B))

35) (A= B)= ((B=C(C) = (A= ()))
(36) (—A = (—B < (B = A)))

37) (A= B)= ((A=C)= B)= B))

Moreover, in the list below, formulas that are all on the same line are pairwise
logically equivalent.

38) (A=B),(FAVvB),(—B = —A),(AnNB)< A),((AvV B) & B)
(39) —(A = B),(AAN—B)

(40) (A& B),(AAB)V(—mAA—=B)),(mAVvV B)A(—BV A))
41) (A& B),(A=B)A(B= A)),(—A & —B),(B& A)
42) (A< B),(AvB) = (AAB))

(43) (A & B),(A & —B),(—A & B)

(44) A,—A, (AnNA),(AVA),AVAANB)),(An(AVB))
(45) A,(mFA=A),(A= B)= A),(B=> A)A(—B = A))
46) A,AANT),(AVvT), (A& T), (T=A)

47) —A,(A=—-A),(A= B)A(A = —B))

(48) —-A,(A=>1),(A&l)
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(49) _L, (AN L), (A & —A)

(50) T,(AvT), (A=T), (=4

(51) (AAB),(BAA),(AA(—AV B)),—(A= —B)

(52) (AVB),(BvA),Av (—AAB)), (A= B),(A= B)= B)

53) (A= (B=0C),(AANB)=C),(B=>A=0)),(A=>B)=
(A = QC))

(54) (A= (BAC)), (A= B)A(A=0))

(55) (A= (BVvC(C)), (A= B)Vv(A=0))

(56) ((AAB)=C), (A= C)Vv(B= ()

(57) ((AVvB)=C), (A= C)A(B= ()

(58) (A& (B (),(As B) & ().

We should take notice, fromlines (54) to (57), that implication does notdistribute
over conjunction nor over disjunction. We see however that it does distribute from
the left ((54) and (55)), which is to say when A and V occur to the right of =. In the
case when one or the other is located to the left of =, we have a kind of artificial
distributivity, the A (respectively, the Vv) being transformed into V (respectively,
into A\) after its ‘distribution’ ((56) and (57)). It behoves us to be vigilant in all
cases when manipulating this type of formula.

From now on, we will admit the following abuses of notation:

e In general, in writing a formula, we will allow ourselves to omit the outer-
most parentheses. This convention supposes that these parentheses automati-
cally reappear as soon as this formula occurs as a (strict) sub-formula of another
formula: for example, we will accept the formula F = A < B, and theformula

FF = —C, but the latter will obviously be written (A < B) = —C and not as
A& B = —C.

e Forall formulas F, G, and H,
the formula ((F A G) A H) will be written (F AG A H),
the formula ((F v G) v H) willbe written (F v G v H).

We could also, by applying the previous convention concerning the omission of
parentheses, write FAGA Hor Fv GV H.

e More generally, for any non-zero natural number k, if F|, F2, ..., Fj are
formulas, we will let F; A F2 A --- A Fj. represent the formula

((...(FIAF)YNF)IA--- A F)

(whichbegins with k — 1 occurrences of the open parenthesis symbol). Of course
we make the analogous convention for disjunction.

o If7 ={iy,i2,...,ir}1sanon-empty finiteset of indices and if F;,, F,, ..., F;
are formulas, the formula F;; A F; A --- A Fy, will also be written:

/\Fi
jei

(to beread as ‘the conjunction of the F'; for j belonging to 7).
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We will notice that with this notation, there is an ambiguity relating to the order
of the indices in the set /, which needs to be fixed for this manner of writing
to have a meaning. But in fact, as long as we are concerned with semantics, the
choice of this ordering has no importance whatever in view of the commutativity
of conjunction.

In the same way, the formula F;, v F;, v --- Vv F; will be abbreviated:

V Fj

jel

(to beread as ‘the disjunction of the F; for j belongingto I°).

Naturally, we will also have variants, such as \/ |, ., Gk or /\ gey F (where X
is a non-empty finite set of formulas), whose meaning is clear.

In fact, our decision, for example, that the expression A v B Vv C represents
the formula ((A Vv B) v C) is based on an arbitrary choice. We could just as well
have opted for the formula (A Vv (B v C)) which is logically equivalent to the
first one. It is the associativity of conjunction and dis junction (numbers (5) and (6)
from Section 1.2.3) that led us suppress these parentheses knowing that, whatever
method is used to reintroduce them, we obtain a formula from the same equivalence
class. (In Exercise 16, we will understand why it would be imprudent to allow the
analogous abuses of notation in the case of <, although this appears, according
to number (58) from Section 1.2.3, to allow it just as well as A and V).

1.3 Normal forms and complete sets of connectives
1.3.1 Operations on {0, 1} and formulas

Up to and including Section |.3.3, we will assume that the set P of propositional
variables is a finite set of n elements (n > 1):

P={A,A,, ..., A}

This allows us to consider that every formula F € F has its variables among
A1,A, ..., A, andtowrite F = F[A1, Ay, ..., Ayl

Notation:

e Forevery n-tuple (g1, €2, ..., &) € (0, 1}", 8¢, ,.... ¢, denotes the distribution
of truth values defined by 8¢, ¢,.. .., (A;) = ¢; foreachi € {1,2, ..., n}.

e For each propositional variable A and for each element € € {0, 1} we let €A
denote the formula thatis equal to A ife =1 and to —Aife = 0.
For each formula F, we let A(F) denote the set of distributions of truth values

that satisfy F:

A(F)Y= {5 €{0,1}" :8(F) = 1).
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For each formula F, we define a mapping ¢ g from {0, 1}f into {0, 1) by

§0p(81, E2yenvy En) - 881,82,...,8,, (F)

The mapping ¢ is thus none other than the one defined by the truth table of F.
We will allow ourselves the slight abuse of language involved in saying that ¢ is
the truth table of F.

Notice thattwo formulas F and G are logically equivalent if andonlyif o r = ¢¢.
What this means precisely is that the mapping F +— ¢g (from F into {0, 1)U0. 117
is compatible with the relation ~. We also see that this mapping is not injective
(for example, for any formula F, we have: ¢_.r = ¢@F), but that the mapping
that it induces, from F/ ~ into {0, 1}({0’1}'1) (the mapping CI(F) + @F) is injec-
tive (recall that cl(F) denotes the equivalence class of the formula F' under the
equivalence relation ~). This shows that the number of equivalence classes for
the relation ~ on F is at most equal to the number of mappings from {0, 1}" into
{0, 1}, which is to say 22"

It remains to discover if there are exactly 2% equivalence classes of formulas or
if there are fewer. In other words, is the mapping F' +— ¢F surjective? Or again,
can the table of an arbitrary mapping from {0, 1}" into {0, 1} be viewed as the truth
table of some formula?

The answer to these questions is positive, as we will see with the next theorem.
The proof of the theorem will furnish us with an explicit method for finding such
a formula, knowing only its truth table.

Lemma 1.25 Forany n-tuple (€1, €2, ...,€,) € {0, 1}", the formula
/\ Ek Al
1<k<n

is satisfied by the distribution of truth values 8¢, ¢, ., and by no other:

In our notation, this would be written: A(/\| <4<, ekAk) = (Oe).eq.....60}-

Proof For any distribution of truth values A, we have A( AN <k<n &k Ap) = 1ifand
only if foreveryk € {1, 2, ..., n}, AexAr) = 1, which, in view of the definition
of &,.¢5,...¢,, 1S €quivalent to:

for every k € {13 21 «ay n}! )"(Ak) — 38},82,...,8}; (Ak)s
in other words, to A = 8¢y ¢,.....c0- o
Lemma 1.26 Let X be a non-empty subset of {0. 1}" and let Fx be the formula
\/ ( /\ SgAi) .
(81,82....,€n)EX I<i<n

Then the formula Fx is satis fied by those distributions of truth values &, ,,.. ¢,
for which (€1, &2,...,€&n) € X andonly by these.
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With our notations,

A( \/ ( /\ Sin)) = {0¢1,e9....6, - (E1,82,...,8,) € X}.

(81,62.....6n)€X 1<i<n

Proof For any distribution of truth values A, we have A(Fy) = 1 if and only if
there exists an n-tuple (i, €2, . - ., €x) € X suchthatA( A\ .;<, & A;) = 1, which,
accordingto Lemma 1.25, isequivalentto: thereexists ana-tuple (g1, £2, . . ., €x) €
X such that X = ¢ &5, ¢,, Or equivalently, to

}L € [88|,{;‘2,...,8n . (8[, 821 ey 8!1) & X}°
a

Theorem 1.27 For any mapping ¢ from {0, 1}"* into {0,1}, there exists at least
one formula F such that o = .

(In other words, every mapping from {0, 1}” into {0, 1} is a truth table).

Proof Fix a mapping ¢ from {0, 1}" into {0, 1}.

e Ifitassumes only the value 0, then itis a truth table, for example, of the formula
F = (Ain—A)).

e In the opposite case, the set
X=¢ '({(1) ={(e1.62,....80) €{0.1}" 1 g(e1,82,...,8,) =1}

is non-empty and, by virtue of LLemma 1.26, the formula

Fx=\/ (/\ s,-A,-)

(€1.62.....en)EX l<i<n

is satisfied by those distributions of truth values 8¢, ¢, .., for which
¢w(er, 82, ...,€&n) =1 and only by these.

In other words, for any n-tuple (g1, £2, - .., &n) € {0, 1}", we have
8el,e9,...6, (F) = 1 if and only if p(e1,€2,...,6,) = 1.

This means precisely that ¢ 1s the function ¢, the truth table of the formula F'.
|

Thus we see that there are 22 equivalence classes of formulas on a set of n
propositional variables, corresponding to the 2?" possible truth tables.

Mappings from {0, 1} into {0, 1} are sometimes called n-place propositional
connectives. We see that it is harmless to identify such an object with the class of
formulas which is naturally associated to it.

In the cases n = 1 and n = 2 which we will examine in detail (and which lead
respectively to 4 and to 16 truth tables), we will rediscover, among the common
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names for these one- or two-place connectives, names that were already used to
denote symbols for propositional connectives. Thus, for example, Vv simultane-
ously denotes the symbol for the propositional connective and the equivalence
class of the formula (A} v A,) as well as the corresponding mapping from {0, 1}
into {0, 1}.

Tables 1.1 and 1.2 present all the two-place and one-place propositional con-
nectives (@1 to @16 and Y to Yr4). The first columns give the values of each
mapping at each point of {0, 1} or of {0, 1}. The column that follows gives a
formula belonging to the corresponding equivalence class. Finally, the last column
displays the symbol in common use, if any, that represents the connective or its
usual name.

Table 1.1 The two-place connectives

Values of ¢; Example of a Usual denotation for ¢;
formula whose

€ 0 0 | 1 truth table is ¢;
€ 0 1 0 1 Symbol Name
©; (€4, €72) 0 0 0 0 (A A —Ar) 0 FALSE
(€1, €7) 0 0 0 1 (A; A A2) A AND
i€, €2) 0 0 1 0 —(A) = A2) #> DOES NOT IMPLY
ws(€), €2) 0 0 1 1 Al
ws(€r, €2) 0 1 0 0 —(A2 = A)) =
vo(€r, €2) 0 1 0 1 A2
w71(€1, €7) 0 1 1 0 —=(A; © A2) & NOT EQUIVALENT
wg(€). €2) 0 1 | 1 (A V Ap) \Y; OR
o€y, €2) 1 0 0 0 (A Vv Ag) v SHEFFER’S ‘OR’
¢1o(er, €2) 1 0 0 1 (A1 & Ap) & IS EQUIVALENT TO
©11(€1, €7) | 0 | 0 —A>
©12(€1, €2) 1 0 | 1 (A2 = A)) <
@13(€1, €2) l 1 0 0 —A|
Y1a(er, €2) 1 1 0 1 (A1 = A2) = IMPLIES
p1s(€1, €2) 1 1 1 0 —(A] N Ap) A SHEFFER’S ‘AND’
@](,(6],62) 1 1 1 1 (AI Vv ﬂA]) 1 TRUE

Table 1.2 The one-place connectives

Values of ¥; Example of a Usual

formula whose designation

€] 0 1 truth table is ¥; of ys;

vier) 0 0 (A) A=A 0 (FALSE)

]l'z (6 1 ) 0 1 A t IDENTITY

V3(€) 1 0 -4 — (NOT)

Yraer) 1 1 (A} vV —AY) 1 (TRUE)
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1.3.2 Normal forms

There are important consequences of Theorem 1.27. Before examining them, we
need some definitions:

Definition 1.28

(1) A formula F is in disjunctive normal form (DNF) if and only if there exist
(a) an integer m > 1,

(b) integers ki, ka, ..., km > 1,

(c) foreveryi € {1,2, ..., m}, ki propositional variables: B;, Bi2, ..., Bik,
and k; elements ;1. €i2, - - ., ik, in {0, 1}, such that

F = \/ (€11 Bi1 /\8i28i2/\"'/\8ik,-8ik;)-

1<i<m

(2) A formula F is in canonical dis junctive normal form (CDNF) if and only if
there exists a non-empty subset X of {0, 1} such that

SR

(617629-"’8I1)€X lSiSn

(3) By interchanging the symbols for disjunction and conjunction in parts (1)
and (2), weobtain respectively the definitions of a formula being in conjunctive
normal form (CNF) and a formula being in canonical conjunctive normal
Sform (CCNF).

These definitions callfora few remarks. First of all, we see that to be in canonical
disjunctive normal form is a special case of being in dis junctive normal form (the
case where each k; is equal to n, where foreach i € {1,2,...,n} and j €
{1.2,...,m}, Bi; = Aj and where the m n-tuples &;1, &i2, ..., €ik are pairwise
distinct; note, in passing, that this forces m to be at most equal to 2").

Furthermore, by examining the proof of Theorem 1.27, we see that, given a
mapping ¢ from {0, 1}" into {0, 1} distinct from the zero mapping, there exists a
formula F in canonical disjunctive normal form such that ¢ = ¢. (The formula
F x that we have been considering is certainly in CDNF.) As well, we conclude
a kind of uniqueness for canonical disjunctive (or conjunctive) normal forms, in
the sense that two canonical disjunctive (or conjunctive) normal forms which are
logically equivalent can differ only in the ‘order of their factors’. More precisely,
if the formulas:

\/ (/\ 8,-A,-> and \/ (/\ n;A;>
(€1,62+...8n)€X \1Zi<n (M1.7%25., 1)€Y \1<i<n

are logically equivalent, then the subsets X and Y of {0, 1}" are identical. The
analogous fact is obviously true for conjunctive normal forms.
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These remarks lead us to the following normal form theorem:

Theorem 1.29 Every formula is logically equivalent to at least one formula in
disjunctive normal form and to at least one formula in conjunctive normal form.
Any formula that does not belong to the class 0 is logically equivalent to a unique
formula in CDNF; every formula that does not belong to the class 1 is logically
equivalent to a unique formula in CCNF, where uniqueness is understood to be
‘up to the order of the factors’.

Proof Let F be a formula.

e If F is atautology, it is logically equivalent to A} V — A, which is both a DNF
and a CNF.

e [f —F is atautology, F' is logically equivalent to A A —A |, which is DNF and
CNF.

e [n the other cases, we have just observed that F' is logically equivalent to a
formula in CDNF. But this is also true for = F, which means that there is a
non-empty subset X of {0, 1}" such that

—~F ~ \V ( A\ 85A;).

(e1.£2,....en)€X [<i<n

Therefore we have

F ~ —=—F

(€1,62,-.,€6n)EX [<i<n

A (V)
(61,€2,...,6n)eX \Il<i<n

(by de Morgan’s laws). This last formula, once we delete any double negations,
is in CCNF.

The second partofthe theoremclearly follows from the first and from the remarks
that preceded it. ]

We cantherefore speak of ‘the CDNF’ of aformula (provided it is not an antilogy)
and of ‘the CCNF’ of a formula (provided it is not a tautology).

The normal form theorem also furnishes us with a practical method f or obtaining
the CDNF and the CCNF of a formula (when they exist) once we know its truth
table. Thus, for example, the formula

G=(A= ((BA—=A)V(—CAA) & (AV (A= —B)))),

whose truth table was givenin Section 1.2.1, is satisfied by the distributions (0,0,0),
(0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,0) and (1,1,0), while =G is satisfied by (1,0,1)
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and (1,1,1). From this we conclude that the CDNF of G is

(mAA=BA-C)V((=AA-BAC)V(-AABA-C)V
(=AABAC)V((AAN—=BA-C)Vv(AABA=C),

and the CDNF of =G is
(AAN=BAC)V((AANBAC),
and finally the CCNF of G is
(HAV BV -C)YA(—AV—=Bv-C).

Remark 1.30 We should mention that formulas of the type ; A; are sometimes
called literals (mostly by computer scientists), that formulas of the type \/ ¢y 1« Bx
(i.e. a disjunction of literals) are often called clauses and that conjunctive nor-

mal forms are then called clausal forms. We will encounter this terminology in
Chapter 4.

1.3.3 Complete sets of connectives

In a formula that is in disjunctive normal form, the only symbols for connectives
that can occur are -+, A and V. So we may conclude from Theorem .29 that every
formula is equivalent to at least one formula in which these are the only connectives
that may appear.

This property can be restated in terms of propositional connectives, that is, in
terms of operations on {0, 1}:

Lemma 1.31 Foreveryintegerm > 1, every mapping from{0,1}" into{0, 1} can
be obtained by composition of the mappings — (from {0, 1} into {0, 1}), together
with A and v (from {0, 1}? into {0, 1)).

Proof Let m be a non-zero natural number and ¢ be a mapping from {0, 1}
into {0, 1}. Choose a formula F which has ¢ as its truth table and which is written
with no symbols for connectives other than —, A and Vv (for example, a formula
in DNF). The decomposition tree of F then gives us a composition of mappings
taken from among the mappings —, A and Vv which coincides with the function ¢.
Without going into uselessly heavy detail, let us be satisfied with an example.

The mapping ¢ from {0, 1)3 into {0, 1} which assumes the value 0 for (1,0,1)
and (1,1,1) andthe value 1 for the six other triples in {0, 1}3 is, as we have already
shown above, the truth table of the formula

(—AV BV-C)A(—AV-=BYvV-().

(Here we chose the CCNF, which is much shorter than the CDNF and is also
written using only =, A and V).
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The truly correct way to write this formula is
(mAV B)V =C) A ((—AV =B) Vv =C)).
We conclude that for any elements x, y and z from {0, 1}, we have

ox, y, 2) = A(V(V(—x,y), 02), V(V(—x, —Yy), —2)).

(In thisexpression, —, A and V are on this occasion denoting operationson {0, 1}).
We see that the operations —, A and V generate all possible operations (with any
number of places) on {0, 1}. |

We express the property that has just been exhibited by saying that {—, A, v} is
a complete set of connectives.

Definition 1.32 A set of connectives is called complete if it generates, under
composition, the set of all propositional connectives. A complete set of connectives
is called minimal when no proper subset is a complete set of connectives.

The set {—, A, V} is not a minimal complete set. Actually, with every formula
F which involves no connectives other than —, A and Vv we can associate a log-
ically equivalent formula that involves only the symbols for connectives — and
V: it suffices to substitute, for each sub-formula of F of the form (H A K), the
logically equivalent formula —=(—HV = K), repeating the operation as many times
as necessary to eliminate all the A. This shows that {—, v} is a complete set of
connectives that is a proper subset of {—, A, V}.

The set {—, v} isa minimal complete set. Tobe sure, itis sufficient to show that
{—} and {V} are not complete sets.

Formulas in which no symbol for a connective other than — occur are the formu-
las of the type — ... —A (a propositional variable preceded by a finite number,
possibly zero, of occurrences of the symbol —). A formula of this type is logically
equivalent either to A or to —A, and it is clear that there are formulas (forexample,

(A v B)) that are not logically equivalent to any formula of this type. Thus, {—}
is not complete. As for {V}, note that a formula in which the only symbol for a
connective that occurs is v will be satisfied by the distribution of truth values §;
defined by 81 (X) = 1 for every propositional variable X . This can be proved with-
out difficulty by induction (Exercise 20). From this we conclude that the formula
— A, which takes the value 0 for §1, cannot be logically equivalent to any formula
which uses only V as a symbol for a connective. Thus {V} is not complete.

In Exercise 15, we will see that each of the connectives known as Sheffer strokes
(Yand A has the property of being, by itself alone, a complete set of connectives.
We will also show that, among the one- or two-place connectives, these are the
only ones with this property.

Remark 1.33 Suppose we wish to show, by induction, that a certain property
X (F)istrue forevery formula F € F, and suppose that this property is compatible
with the relation ~ (which is to say that any formula that is logically equivalent to
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a formula having property X also has the property). We can then exploit the fact
that {—, V} is a complete set by limiting ourselves, in the proof by induction, to the
induction steps relating to — and to V. If we prove that X (F) is true when F is
an element of P, and that, whenever X (F) and X (G) are true, then X (—F) and
X ((F v G)) are also true, this will guarantee that the property X is true for all
formulas inwhichno symbols for connectives other than —and v occuy: Nowlet H
be an arbitrary formula from F. Since {—, V} iscomplete, H is logically equivalent
to at least one formula K which can be written using only these connectives. So
X (K) is true, and since X is compatible with ~, X (H) is also true. Of course,
this remark applies just as well to any other complete set of connectives.

To give an example, note that in the proof of Theorem 1.22 we could have
legitimately dispensed with the steps relating to v, = and < thanks to the remark
that was just made (for {—, A} is a complete set), to the compatibility of the
property in question with ~ (which is obvious), and subject to verifying that the
completeness of the set {—, v} can be proved without recourse to Theorem 1.22
(otherwise we would be running in circles!).

1.4 The interpolation lemma

1.4.1 Interpolation lemma

Lemma 1.34 Let F and G be two formulas having no pro positional variable in
common. The following two properties are equivalent:

(1) The formula (F = G) is a tautology.
(2) At least one of the formulas —F or G is a tautology.

Proof It is clear first of all that the second property implies the first: for any
distribution of truth values 8, we have §(G) =1 if G is a tautology and §(F) =0
if = F is one. In both cases, § ((F = G)) = 1.

Now suppose that property (2) is false. Then we can choose a distribution of
truth values 2. such that ».(—F) = 0, which is to say A(F) = 1, and a distribution
of truth values e such that £ (G) = 0. Now define a distribution of truth values §
by setting, for each propositional variable X,

5(X) = M(X) 1f X occurs at least once in F;
| w(X) if X does not occurin F.

Since, by hypothesis, any variable that occurs in G cannot occurin F', we see that
§ coincides with X on the set of variables of F' and with gt on the set of variables of
G. Weconclude (Lemma 1.19) that§ (F) = A(F) = 1andthat§(G) = 1+(G) = 0,
and, consequently, that §((F = G)) = 0. So property (1) fails. ]

The following result is known as the interpolation lemma:

Theorem 1.35 Let n be a non-zero integer, A, A2, ..., Ay pairwise distinct
propositional variables, and F and G two formulas that have (at most) the
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propositional variables A, Ay, ..., A, in common. The following two proper-
ties are equivalent:

(1) The formula (F = G) is a tautology.

(2) There is at least one formula H, containing no propositional variables other
than A, A,, ..., Ay, such that the formulas

(F = H)and (H = G)

are tautologies.
(Such a formula H is called an interpolant between F and G).

Proof Supposet* (F = H)andF* (H = G)andconsider an arbitrary distri-
bution of truth values 8. If §(H) = 0, then §(F) = 0 (because §((F = H)) = 1);
if 5(H) = 1, then 6§(G) = 1 (because §((H = G)) = 1). In both cases,
§((F= G)) = 1, which proves property (1).

To show the converse, we will assume H* (F = G) and argue by induction on
the number of propositional variables which have at least one occurrence in F but
have none in G.

e If this numberiszero, thenbysetting H = F weclearly obtain a formula which
contains no propositional variables other than A, A, ..., A, and is such that
F* (F = H) and H* (H = G).

e Suppose (the induction hypothesis) that property (2) is true for formulas F
that contain at most m variables that do not occur in G and let us examine
the case in which there are m + 1. Let By, B2, ..., Bm, Bm+1 denote the

variables of F' that do not occur in G. According to our conventions, we thus
have F - F[Alv A2a LI Ana Bla BZ’ R Bm, Bm+l]- Set

F\ = F[A,A,,...,An,B1,B2, ..., B, A1l = Fay/B,yy
FO — F[Al,Az,"-,An, Bl, BZ, e e e Bm, _lAlJ S F_'Al/Bm+I'

Notice that because B,,;.; does not occur in G, the result of substituting the
formula A; for the variable B,y in the formula (F = G) is the formula
(F1 = G), and the result of substituting the formula —A) forthe variable B,,, 41
in the formula (F = G) is the formula (Fp = G). Invoking Corollary 1.23
and our hypothesis, we concludethat (F|, = G) and (Fg = G) are tautologies,
and hence so are the formulas

((Fl = G) A(Fp = G)) and ((Fy Vv Fg) = G)

(see number (57) in our list in Section 1.2.3).

The variablesintheformula (F1V Fg) areamong Ay, A>,...,A,, By,B2,..., Bn.
So we can apply ourinduction hypothesis and find a formula H thatis aninterpolant
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between (F1V Fp) and G, whichistosay thatits variables areamong A1,A>,. .., A,
and it is such that

=* ((F1 v Fop) = H) and =* (H = G).

We will now show that (F=(F1V Fp)) is also a tautology. This will conclude the
proof since we can then conclude (invoking tautology number (31)) +* (F=H),
which will make H an interpolant between F and G.

So let § be an assignment of truth values which satisfies F. We have (by
Theorem 1.22):

either (A1) = &6(B,,+1),andin thiscase§(F)) = 6(F) =1,
orelse 5(A1) # 6(B,u+1), andsod(Fp) = 8(F) = 1.
Inall cases, §((F) Vv Fg)) = 1. Andsot-* (F = (F1 VvV Fp)). |

1.4.2 The definability theorem

Here is a corollary of the interpolation lemma, the definability theorem:

Theorem 1.36 LetA, B, Ay, Ay, ..., Ay be pairwise distinct propositional vari-
ablesand F = FlA, A, Ay, ..., Ax] be aformula (whose variables are therefore
among A, Ay, Ay, ..., Ar). We assume that the formula

((F[A, A1, Ap, ..., AkJNF[B, A, A, ..., Ar]) = (A & B))

is a taurology. Then there exists a formula G = G[A1, Ay, ..., Ar], whose only
variables are among A\, A2, ..., Ay and is such that the formula

(FIA, A1, Ay, ..., Al = (A & G[A1, Ay, ..., ALD)

is a tautology.

Intuitively, the hypothesis is saying that the formula F[A, Ay, A2, ..., Al
determines the value of A as a function of the values of A}, A2, ..., A, in the
sense that distributions of truth values that satisfy F and that assign the same
value to Ay, Ay, ..., Ax must also assign the same value to A; the conclusion
is that the value thereby assigned to A is the value taken by a certain formula
G[A}, Ay, ..., Ax] which does not depend on A and which could be called a
‘definition of A modulo F’. Exercise 18 suggests a proof of the theorem directly
inspired by this intuition. Here, we are content to apply the preceding lemma.

Proof Taking into consideration numbers (41), (53), and (54) from our list in
Section 1.2.3, the hypothesis leads successively to the following tautologies:

F* ((F[A, Ay, Ay, ..., A)] A FIB, A1, Ay, ..., Ax]) = (A = B)),
=* (((F[A, Ay, Ag, ..., AlJAFIB, Ay, Ay, ..., Atl) A A) = B),
F* (((FIA, A1, Ay, ..., AllNA) A F[B, A1, Ay, ..., Ar) = B),
H*((F[A,A|, Ay, ..., Akl A A) = (F[B, Ay, A, ..., Al = B)).
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The interpolation lemma then guarantees the existence of an interpolant

G[A1,A,, ..., A] between (F[A, A1, Ay, ..., Axl A A)
and (F[B,A1, Ay, ..., A]l) = B)

So, in particular,

H* ((FLA, Ay, Az, ..., Akl A A) = G)

and hence
H*(FIA, Ay, Az, ..., Akl = (A = G)). (*)
On the other hand,
F* (G = (F[B, A;, Ay, ..., Axl = B)),
and so

F* ((GAF|B,A, Ay, ..., Ar]) = B)
I—* ((F[B, Al, A2, OO ) Ak] AG) i B)’
H* (F[B, A1, Ag, ..., Al = (G = B)).

The result of substituting A for B in this latter formula is again a tautology
(Corollary 1.23):

H* (FIA, A1, A2, ..., Akl = (G = A)). (%)

Properties (x) and (xx) together with tautologies (41) and (54) from Section 1.2.3
finally give us

F* (F[A, A, Ay, ..., Ar] = (A & G)). n

1.5 The compactness theorem

1.5.1 Satisfaction of a set of formulas

Definition 1.37 Let A and B be two sets of formulas of the propositional calculus
on the set of propositionalvariables P, let G be a formulaand let § be a distribution
of truth values on P.

e A is satisfied by & (or ¢ satisfies A) if and only if § satisfies all the formulas
belonging to A.

o A is satisfiable (or consistent, or non-contradictory) if and only if there exists
at least one distribution of truth values that satisfies A.

e A is finitely satisfiable if and only if every finite subset of A is satisfiable.
e Aiscontradictory if and only if it is not satisfiable.
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e G is a consequence of A (which we denote by: A —=* G) if and only if every
distribution of truth values that satisfies A satisfies G.
(T he notation for ‘G is not a consequence of A’ is: A¥* G).

e A and B are equivalent if and only if every formula of A is a consequence of
B and every formula of B is a consequence of A.

For example, consider pairwise distinct propositional variables A, B, Ay,
A2,...,Am,...: the set {A, B, (—A Vv B)} is satisfiable; {A, =B, (A = B))}
is contradictory; the empty set is satisfied by any distribution of truth values what-
ever (if this were not true, we could find a distribution of truth values § and a
formula F € @ such that §(F) = 0; but such a feat is clearly impossible...).
We have

{A, B}F* (A A B)and {A, (A= B)}H* B,
The sets {A, B} and {(A A B)} are equivalent, as are the sets
{AL, A, ..., Ay, ... }and {A1, AfANAg, ..., ATANAAN ... NA,, ...}

The following lemma lists a certain number of properties that follow from these
definitions. Nearly all of them areimmediate consequences. It will profitthe begin-
ning reader to carefully prove all of these. We will content ourselves with proving
the three properties marked by two bullets (ee) rather than one.

Lemma 1.38 For all sets of formulas A and B, integers m and p > 1, and
formulas G, H, Fi, F2,..., Fyy and G, G2, ..., Gp, the following properties
are verified:

o AF* G ifandonlyif AU {—G} is contradictory.

o If Ais satisfiable and if B C A, then B is satisfiable.

o If Ais satisfiable, then A is finitely satisfiable.

e If Ais contradictory and if A C B, then B is contradictory.

o fAV*Gandif AC B, then B+H* G.

e AU |{G}\* H ifandonly if AF* (G = H).

e AF*(GAH)ifandonlyif Ax-* Gand A-* H.

o {F,F2, ..., FulF* G ifand only if=* (F1 A F2 A ... A F) = G).

e o G isatautologyifandonly if G is a consequence of the empty set.

e GisatautologyifandonlyifG is a consequence of any set of formulas whatever:
e A is contradictory if and only if A H* (G N =G).

e Aiscontradictory if and only if every formula is a consequence of A.

o A s contradictory if and only if every antilogy is a consequence of A.

o A is contradictory if and only if there exists at least one antilogy that is a
consequence of A
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o {F1, Fa,..., Fu}iscontradictory ifand only if (—mF1 v —=FVv...v=F,)isa
tautology.

e A and B are equivalent if and only if they are satisfied by the same assignments
of truth values.

e Whenwe replace each formulain Abya logically equivalent formula, we obtain
a set that is equivalent to A.

e If Ais contradictory, then B is equivalent to A if and only if B is contradictory.

e o Ais equivalent to the empty set if and only if every formula belonging to A
is a tautology.

e The empty set is satisfiable.
o The set F of all formulas is contradictory.

o The sets {G} and {H} are equivalent if and only if the formulas G and H are
logically equivalent.

o Thesets (F\, F2, ..., Fm} and {G1, G2, ..., G p} are equivalent if and only if
the formula ((FYy ANFa N --- N Fp) & (G A Gy A... AGp)) is a tautology.

e Every finite set of formulas is equivalent to a set consisting of a single formula.

o o When the set P is infinite, and only in this case, there exist sets of formulas
that are not equivalent to any finite set of formulas.

e The binary relation ‘is equivalent to’ is an equivalence relation on the set of

subsets of F.

Proof ee-* Gifandonlyif @ F-* G: because the empty set is satisfied by every
distribution of truth values, G is a consequence of the empty set if and only if
every distribution of truth values satisfies G, in other words: if and only if G is a
tautology. Observe, as a result, that the notation -* G for ‘G is a tautology’ seems
natural.

ee A is equivalent to ¢ if and only if every element of A is a tautology: it is
clear, first of all, that every formula belonging to ¢} is a consequence of A, and
this holds for any set .A whatever (otherwise, there would be a formula belonging
to ) which would not be a consequence of A, and this is clearly impossible);
so what we have to prove is that every formula in A is a consequence of ¢ if
and only if every formula in A is a tautology; but this is precisely the preceding
property.

ee P is infinite if and only if there exists a set of formulas that is not equivalent
to any finite set: if P is finite and has n elements, there are 22" classes of logically
equivalent formulas; choose a representative from each class. We can then, given
an arbitrary set of formulas &, replace each formula of X by the representative
chosen from its equivalence class; the resulting set is equivalent to X" and is finite
since it can contain at most 22" elements. If P is infinite, consider the infinite
set of formulas ) = {A1, A2, ..., Ay, ...} (where the A; are pairwise distinct
propositional variables); if ) were equivalent to a finite set of formulas Z, then Z
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would be satisfied, as is ), by the constant distribution §; equal to 1, and we could
choose at least one integer k such that the variable Ay does not occur in any of
the formulas of £ (which are finite in number); so the distribution A which takes
the value 1 everywhere except at Ax, where its value is 0, would still satisfy £
(Lemma 1.19) but would obviously not satisfy ), thereby yielding a contradiction:
thus we have a set ) which is not equivalent to any finite set. L

1.5.2 The compactness theorem for propositional calculus

We have arrived at what is incontestably the major theorem of this chapter. We
will see several applications of it in the exercises.
It can be stated in several equivalent forms:

The compactness theorem, version | :

Theorem 1.39 For any set A of formulas of the propositional calculus, A is
satisfiable if and only if A is finitely satisfiable.

The compactness theorem, version 2:

Theorem 1.40 For any set A of formulas of the propositional calculus, A is
contradictory if and only if at least one finite subset of A is contradictory.

The compactness theorem, version 3:

Theorem 1.41 For any set A of formulas of the propositional calculus and for
any formula F, F is a consequence of A if and only if F is a consequence of at
least one finite subset of A.

Proof The proof that the three versions are equivalent is a simple exercise that
uses theelementary properties stated in Lemma | .38. We also observe that the ‘only
if” direction of version 1 and the ‘if” direction of versions 2 and 3 are obvious.
We will now prove the ‘if” direction of version 1.
Here is a first proof that is valid for the case in which the set of propositional
variables, P, is countably infinite:

(For the case when P is finite, the theorem is more or less obvious (there isonly
a finite number of equivalence classes of formulas), but we can always invoke the
situation of the present proof by extending P to a countable set.)

So consider a set A of formulas that is finitely satisfiable. We must prove the
existence of a distribution of truth values that satisfies all of the formulas in A.
To do this, we will define, by induction, a sequence (g;),,cn of elements of {0, 1}
such that the distribution of truth values § defined by:

forevery n € N, 6g(A,) = &n,

satisfies A.
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To define g¢, we distinguish two cases:

e Case Op: for every finite subset B C A4, there exists at least one distribution of
truth values & € {0, 1}” which satisfies B and is such that §(4¢) = 0.

In this case, we set g = 0.

e Case lg: this is the contrary case: we can choose a finite subset By C .A such

that, for every distribution of truth values § € {0, 1} which satisfies Bg, we
have 5(A0) = 1.

In this case, we set eg = 1.

In case 1g, the following claimis verified:

Forevery finitesubset3 C A, thereexistsat least one distribution of truth values
§ € {0, 1}” which satisfies BB and is such that §(Ag) = 1.

To see this, given a finite subset B C A, note that B U By is a finite subset of A
that is satisfiable according to the initial hypothesis. Choose a distribution of truth
values § that satisfies it. Then § satisfies By (which is a subset of B U Bg!), and,
by the choice of By, we have §(Ag) = 1. But since § also satisfies B3, the claim is
established.

Thus, from our definition of &g, we may conclude the following property (Ro):

For every finite subset B C A,
(Ro) there exists at least one assignment of truth values é € {0, 1}F
which satisfies BB and is such that §(Ag) = &p.

Suppose (the induction hypothesis) that g, €, .. ., &, (elements of {0, 1}) have
been defined in such a way that the following property (Rj) is satisfied:

For every finite subset B C A, there exists at least one assignment
(B,) of truth values 8 € {0, 1}” which satisfies B and is such that
5(Ag) = €0, 6(A1) =¢€1, ..., 6(An—1) = €y—1, and 8(Ap) = €,.

We then define €,4) by distinguishing two cases:

e Case 0,4 : ForeveryfinitesubsetB C A, thereexistsatleastone distribution of
truth values 8 € {0, 1} which satisfies B and is such that §(Ag) = €0, 8(A1) =
Ely ooy 6(An) = &p and 8(An+|) = 0.

IIn this case we set £,4+| = 0.

e Case 1, : this is the contrary case : we can choose a finite subset 53,11 € A
such that, for every distribution of truth values § € {0, 1} P which satisfies B4
and which is such that 6 (Ag) = €9, 6(A1) = €1,...,8(An) = &n, we have
3(An+1) = 1.

In this case, we set 5,4 = 1.
Let us show that property (R,+1) is then satisfied. This amounts to proving, for
case 1,4, that for every finite subset B C A, there exists at least one distribution
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of truth values § € {0, 1}¥ which satisfies B and is such that § (Ag) = €0, §(A]) =
€1,...,.0(An) = ¢, and §(Ap+1) = 1.

So consider a finite subset B € A. Then B U Bpy is a finite subset of A;
and, according to property (R,), we can choose a distribution of truth values é
which satisfies it and is such that 6§ (Ag) = €0,6(A1) = &1, ...,6(An) = &,. S0 8
satisfies Bn+1 and, because of the way this set was chosen, we may conclude that
8(Any1) = 1. Since 8 satisfies B, our objective is achieved.

The sequence (£,),¢N is thus defined; and, for every integer n, property (R;,) is
satisfied.

As anticipated, set 8o(An) = &, for every n.

Let F be formula belonging to .4, and let k be a natural number such that all
the propositional variables that occur in F are among {A}, A2, ..., Ak} (F being
a finite string of symbols, such an integer necessarily exists). Property (R«) and
the fact that { F} is a finite subset of .4 show that we can find a distribution of
truth values 8§ € {0, 1}* which satisfies F and is such that §(Ag) = €0, (A1) =
El,...,0(Ag) = ex. Wesee that § and 8¢ agree on the set {A, A2, ..., Ak}, which
allows us to conclude (Lemma 1.19) that §o(F) = 6 (F) = 1.

The conclusion is that § g satisfies all the formulas in A. [

Let us get to the proof of the theorem in the general case: we no longer make
any particular assumptions about the set P.
We have to invoke Zorn’s lemma (see Part 2, Chapter 7).

Proof Once more, we are given a finitely satisfiable set of formulas, .A.

Let £ denote the set of mappings whose domain is a subset of P, which take
values in {0, 1} and which, for every finite subset 5 C A, have an extension to the
whole of P which is a distribution of truth values that satisfies B.

Formally:

E={pe [ J0.1)%:

XCP
(VB € ©r(A) (38 € {0,1}F) (81X = ¢ and (VF € B) (8(F) = 1))}.

Note that this set is not empty, for it contains the empty mapping (those who
find this object perplexing can find additional comments concerning it in Part 2,
Chapter 7). To see this, note that by our hypothesis, there exists a distribution of
truth values § on P that satisfies B. As é is obviously an extension of the empty
mapping, the latter satisfies the condition for membership in £.

It is interesting to observe that this is the only point in the proof where we use
the hypothesis that A is finitely satisfiable.

Define the binary relation < on £ by

¢ < ¢ if and only if ¥ is an extension of ¢

(inotherwords,dom(¢) € dom() andforevery A € dom(y), ¢(A) = Y (A)).
Itis very easy to verify that < is an order relation on £.
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We will prove that the ordered set (£, <)isinductive, whichis to say that every
subset of £ that is totally ordered by < has an upper bound in £. This is the same
(see Part 2, Chapter 7) as showing that £ is non-empty and that every non-empty
subset of £ that is totally ordered by < has an upper bound in £. This will permit
us (by Zom’s lemma) to assert the existence of a maximal element in £ for the
order <.

We have already observed that £ is non-empty. Consider a non-empty subset
C < & thatis totally ordered by <. We define a mapping A as follows:

e The domain of A is the union of the domains of the elements of C.

e Forevery A € dom(a) and for every ¢ € C, if A € dom(gp), then AL(A) =
@(A).

This definition makes sense because, if ¢ and ¥ are elements of £ such that
A € dom(¢) and A € dom(¥ ), then we have either ¢ < Y or ¥ < ¢, and in
both cases ¢(A) = Y (A); so the value of the mapping A at the point A can be
legitimately defined as the value at A taken by an arbitrary mapping that belongs
to the subset C and is defined at A; thus A is the natural common extension of all
the elements of C.

Let us show that A is anelement of £. For this, given a finite subset B C A, we
must find a distribution of truth values © € {0, l}P which extends A and which
satisfies B. Since B is finite, there are at most a finite number of propositional
variables appearing in the formulas of B.

Let A}, Ay, ..., Ap be the propositional variables that occur in at least one
formula from B and which belong to the domain of X, in other words, to the union
of the domains of the elements of C. Then there exist in C elements ¢y, @9, ...,
©n such that A} € dom(¢;), A2 € dom(¢z), ..., A, € dom(e,). Because C is
totally ordered by <, one of the ¢; is an extension of all the others: call it ¢g. Thus
we have ¢o € C and {Ay, Az, ..., A} € dom(gp). Being an element of &£, ¢g
has an extension Yo to P that satisfies B. Let us define the mapping ¢t from P into
{0, 1} as follows:

_JAa(A) if A edom(a);
n(A) = {wo(A) if A ¢dom(h).

e 1 is anextension of A: it agrees with A on dom(X).

e u satisfies B: to see this, we have on the one hand that for every variable
A € dom(¢g),

p(A) = A(A) = ¢o(A) = Yo(A);

we conclude from this that p agrees with Ypon {A;, A2,..., A,}; onthe other
hand, if A is a variable that occurs in some formula of B without belonging
to the set {Af, A2, ..., A}, we have A ¢ dom(A), so u(A) = Yo(A); thus
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we see that p takes the same value as ¥y on all propositional variables that are
involved in the set BB; and since vrq satisfies B, so does & (Lemma 1.19).

So we have found a distribution of truth values that extends A and that satisfies
B; thus A € £ and £ is seen to be an inductive ordered set. Zorn’s lemma then
allows us to choose an element y from £ that is maximal for the order <.

Suppose that the domain of y is not the whole of P and consider a propositional
variable A that does not belong to the domain of y. We will define an extension
Y’ of y to the set dom(y) U {A} in the following way:

o ¥’ [domi)=V:
e y’'(A) = 0if forevery finite subset B of A there exists a distribution of truth
values é on P that satisfies B, that extends y, and is such that §(A) = 0;

e y'(A) =1 otherwise.

We then make the following claim: if y'(A) = 1, then for every finite subset
B C A, there is a distribution of truth values § on P that satisfies B, that extends
y, and is such that §(A) = 1.

To see this, note that if '(A) # 0, we can find a finite subset By C A such that
for every distribution of truth values & that satisfies By and extends y, we have
5(A) = 1. Now let B be an arbitrary finite subset of .A. The set B U By is a finite
subset of A sothere is (by definition of the set £ to which y belongs) a distribution
of truth values § that extends y and satisfies B U Bg; § satisfies Bg and extends y:
so §(A) = 1. So we have truly found an extension of y to P that satisfies B (since
B C B U By) and takes the value 1 at the point A.

Sowe see that whatever the value of y’(A), there exists, for every finite subset 3
of A, an extension é of y to P that satisfies B and is such that §(A) = y/(A). But
this simply amounts to saying that § is in fact an extension of . Consequently,
forevery finite subset B C A, ¥’ can be extended to a distribution of truth values
that satisfies BB. This means that y’ belongs to £; and so y’ is in £ and is strictly
greater than y for the order < (dom(y) € dom(y’)), which contradicts the fact
that ¢ is a maximal element of £.

So the assumption we made about the domain of y was absurd.

It follows that dom(y) = P. Thus we see that y is a distribution of truth values
on P and that any extension of y to P is equal to y. So by definition of &, every
finite subset B of A is satisfied by y. In particular, this is true for every singleton

subset, which means thateveryformula F' € A is satisfiedby y. So A issatisfiable.
a

In Chapter 2, we will give two other proofs of this theorem.
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EXERCISES FOR CHAPTER 1

1. Given two natural numbers m and n, what is the length of a formula of the
propositional calculus that has n occurrences of symbols for binary connectives
and m occurrences of the symbol for negation?

2. Consider formulas of the propositional calculus on a set of propositional vari-
ables P. Given a natural number n, determine the possible different lengths of
a formula whose height is n.

3. The setofpseudoformulas constructed from a setof propositional variables P is
defined to be the smallest set of words on the alphabet PU{ —, A, v, =, &, (]}
that satisfies the following conditions:

e every element of P is a pseudoformula;
e if F is a pseudoformula, thenso is = F;

e if F and G are pseudoformulas, then so are the words:
(F n G, (Fv G, (F = G, (F & G.

Thus the pseudof ormulas are the words obtained from the usual formulas by
suppressing all closing parentheses.

(a) Show that there is a unique readability theorem for pseudoformulas analo-
gous to the one for the usual formulas.

(b) Would the analogous result be true if we suppressed of all the opening
parentheses rather than the closing parentheses?

4. Let F denote the set of all formulas constructed from a givenset of propositional
variables P. Let 7~ denote the subset of F consisting of those formulasin which
the symbols A, Vv, and < do not occur.

(a) Give an inductive definition of the set F*.

(b) Let p¢ be a map from P into F*. Show that there exists a unique extension
tt of u to F* such that forall formulas F and G belonging to F™*:

i(—F) = =p(F), and
1L(F = G) = ~(1(G) = 1(F)).
(c) Show that for all formulas F and G belonging to ™, if F is a sub-formula
of G, then 1i(F) is a sub-formula of £ (G).

(d) Define pto : P — F* as follows: for all A belonging to P, pto(A) = —A.
Write down the formulas 11o((A = B)) and 11o((—A = B)). Show that
for every formula F in F*, ig(F) is logically equivalent to F.



54 PROPOSITIONAL CALCULUS

S. (a) Show that the following two formulas are tautologies. (They use the propo-
sitional variables Ay, A2, A3, B, B2,and B3 and their written form involves
some abuses of language.)

F2 = (((A1 = B) A (A = B)) A(By A By) A (A1 VvV A))
= (Bl = A A (B = A))):

F3 = (((A1 = B)) A (A2 = B2) A (A3 = B3)
A—(By A By) A —=(By AB3)A-=(By AB3) A(A] vV Ay vV AR))
= (B = A2) A (B3 = A)).

(b) Write a tautology £, that generalizes /3 and F3 using the 2n variables A,
BI AZ’ Bza RO An, Bn-

6. E is the formula (B A C) = (A < (—B v ())) in which A, B, and C are
propositional variables.

(a) Find a formula that is logically equivalent to £ and that is written using
only the connectives = and <.
(b) Find a disjunctive normal form for E that is as reduced as possible.

(c) How many terms (elementary conjunctions) are there in the canonical dis-
junctive normal formof E?

(d) Show that the formulas
C=>B=>A<(B=>C)))and (C = (B= A))

are logically equivalent.
7. What are the assignments of truth valueson P = {Ay, Az, ..., A,} that satisfy:

(a) the formula F = (A1 = A)A(Ay = A A---A(An) = Ap)) ?
(b) the formulaG = (F A (A, = A))) ?
(c) theformula H= A (Ai= —A;)?
|1<i<p
l<j<n
i#]
Write down dis junctive normal forms for F, G, and H.

8. Consider the set of propositional variables P = {A}, A,, ..., An}.
(a) Show that the following formula is a tautology:

< \/ (A,-/\A,-))¢> A\ <\/A.,-).

I<i<j<n I<i<n \j#i



10.

11.

EXERCISES FOR CHAPTER | 55

(b) Which assignments of truth values on P make the following formula false:

[<i<n I<i<n \J#i
(c) Show that the preceding formula is logically equivalent to

A\ (A,-=>\/Aj-).

I<i<n i

. A safe has n locks and can be opened only when all n of the locks are open.

Five people, a, b, ¢, d, and e are to receive keys to some of the locks. Each
key can be duplicated any number of times. Find the smallest value of #n, and
a corresponding distribution of keys to the five people, so that the safe can be
opened if and only if at least one of the following situations applies:

¢ a and b are present together,
® a, ¢, and d are present together;
e b, d, and e are present together.

Consider a set of 15 propositional variables:
P ={Ao, A1,..., Al4}.

The subscripts are viewed as elements of the additive group (Z/15Z, +) and
the operations (4 and —) on the subscripts are those of this group.

Find all assignments of truth values to P that satisfy the following set of
formulas

{AO} U {(At = A_t') : 0 Si =< 14}U {((Al A A_,) = Ai-l—j) .
0<i<l14,0<j <14}

Consider distinct propositional variables A and B and a symbol « for a binary
connective. A formula that is neither a tautology nor an antilogy will be called
neutral. For each of the formulas

Fo=(Aa (Ba A)), and
Gy = ((Ba A) o =(Aa B)),

determine whetheritis a tautology, ann antilogy or neutral when

(a) a = A (b) a =V Cc) o ==
d oa=<¢% (e) =% f) a =V

Of course, in cases (e) and (f), ¢ is not a symbol for a connective, but it is used
with the obvious conventions; for example, (B A A) is the formula —=(B A A).
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12. (a) Show that there exists a unique 3-place connective ¢ such that for all ¢
belonging to {0, 1}, we have

o(t,—t, 1) = ¢(t,0,0) =1 and
e(t,t, ™) =@, 1,1) =0.

(b) Find a disjunctive normal form for the connective defined in (a) that is as
reduced as possible.

(c) In each of the following cases, give an example of a formula F of the
propositional calculus on {A, B, C} which, for all assignments of truth
values 6 € {0, I}M’B'C}, satisfies the condition indicated:

(1) 8(F) = p(8(A), 8(A), 5(A))

(2) 8(F) = p(3(A). 8(B). 8(B))

(3) 8(F) = p(3(A), 8(A), 5(B))

(4) 8(F) = p(8(A), 8(B), 8(A))

(5) B(F) = p(5(A), p(3(B), 8(B), 5(B)), 8(A))

(6) 8(F) = p(8(A), 3(B), 8(B)) = ¢(3(A), 8(B), 5(A)).

[Notice that in (6), = i1s not a symbol for a binary connective (since thisis
not a formula in the formal language) but rather denotes the corresponding
binary operation on {0, 1}. An analogous remark applies to the use of — in
the conditions imposed on ¢ in part (a).]

(d) Can the connective Vv be obtained by composition from the connective ¢?
(e) Is {¢} a complete set of connectives?

13. When we add two numbers that when written in the binary number system
(numbers in base 2) use at most two digits, say ab and cd, we obtain a number
withat most three digits, pg#. Forexample, 11401 = 100. Using the standard

connectives, write formulas that express p, ¢, and + as functions of a, b, c,
and d.

14. Consider a set of propositional variables P.
We identif'y the set {0, 1} with the field (Z/2Z, +, %, 0,1).

(a) Express the usual connectives using the operations + and x.
(b) Express the operations + and x using the usual connectives.

(c) Show that with each propositional formula F[A¢, Ao, ..., A,] we can as-
sociate a polynomial in # unknowns Pg € Z/2Z[X1, X2, ..., X,] such
that for all assignments of truth values é € {0, 1}”, we have

8(F)= Pr(8(A1),8(A2),...,8(An)),

where 13; denotes the polynomial function (from {0, 1}" into {0, 1}) asso-
ciated with the polynomial Pg.
For a given formula F, is the polynomial Py unique?
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(d) From the preceding, deduce a procedure for determining whether two for-
mulas are logically equivalent or whether a formula is a tautology.

We propose to slightly modify the notion of propositional calculus that we have
defined by adding to its syntax the ‘constants true and false’.

We still have a set of propositional variables P, the parentheses and the five
symbols for connectives, and, to complete the alphabet from which the formulas
will be built, we add two new symbols T (the constant, true) and _L (the constant,
false) which we may consider, if we wish, to be symbols for 0-ary connectives.
The only modification to the definition of the set of formulas is to admit two
new formulas of height O:

T and 1.

From the semantical point of view, we must augment the definition of the
extension é of an assignment of truth values § (which remains a map from P
into {0, 1}) in the following way:

8(T)=1and (1) =0.

All other definitions are unchanged.

The formula T belongs to 1, the class of tautologies, and the formula 1 to
the class of antilogies, 0. This justifies the use we made of these symbols in our
earlier list of tautologies.

(a) Show that, inthisnew context, the interpolation lemma is true, even without
the hypothesis that the formulas F and G have at least one variable in
common.

(b) Show that any formula that is written with the unique variable A together
with the symbols for connectives A, Vv, T, and L (to the exclusion of all
others) is logically equivalent to one of the three formulas T, 1., A.

(c) Show thatanyformula that is written with the two variables A and B together
with the symbols for connectives -+, <, T, and L. (to the exclusion of all
others) is logically equivalent to one of the eight formulas

T, 1, A, B, A, =B, (A< B), =(A & B).
(d) Show that the following systems of connectives are complete:
{(=,0}; {0, <, Vi {0, <, AL {VE AL
(e) Show that the following systems of connectives are not complete:
{1,=.A V) {0.1. A, v} {01, —, ).

(f) Show that among the zero-place orone-place or two-place connectives, the

only ones that, by themselves alone, constitute a complete set of connectives
are the Sheffer strokes, ¥ and A.
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16. (a) Show that the formula (A <& (B < C()) is logically equivalent to

(b)

(d)

(A< B) & C)butnotto ((A & B) A (B < (C)). The first of these
observations might have led us to adopt a simplified way of writing the for-
mula as A & B & C as we did for conjunction and disjunction. Explain
why the second of these observations motivates us to avoid doing so.

Consider a natural number n > 2 and a set of pairwise distinct proposi-
tional variables B = {Bj, B,, ..., B,}. Let G(B) denote the set of formulas
that can be written using one occurrence of each of the n propositional
variables B;, B,,..., B,, n — 1 occurrences of the opening parenthesis,
n — 1 occurrences of the closing parenthesis and n — | occurrences of
the symbol <. Show that all the formulas in G(B) are (pairwise) logically
equivalent and are satisfied by a given assignment of truth values ¢ if and
only if the number of variables B; (1 < i < n) assigned the value false by §
1S even.

For any formula G € G(B), G denotes the formula obtained from G by
replacing all occurrences of <> with <. Show that G is logically equivalent
to G if nis odd and to =G if n is even.

Let E be a set. For every natural number k > 2 and for all subsets X,
X2, ..., X of E, we define the symmetric difference of X, X», ..., X,
denoted by X; A X, A ... A Xk, by induction in the following way:

X1AX,={xe€eE:xe X & xe Xy
X1AXoA .. . AXpy1 = (X1AX2A ... AX ) A Xig+1-

Show thatforevery natural numberk > 2 andforall subsets X, X, ...,
Xrof E, X1A XA ... AXy is the set of elements of E that belong to an
odd number of the subsets X;.

17. Consider propositional variables A, B, Ay, A,, ..., Ap.

(a) Prove the converse of the definability theorem:

for any formula F[A|, Ao, ..., A,, A, If there exists a formula G[A],
A,, ..., A,] such that the formula

(FIAy1, A2, ..., Ap, Al = (G[A1, A2, ..., Al & A))

is a tautology (we say in this case that G is a definition of A modulo F),
then the formula

(F[A1, A2, ..., An, Al A FLAL Ay, ..., An, B]) = (A & B))

is also a tautology.
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(b) In each of the five following cases, with the given formula of the form

F[Ay, Ay, ..., Ay, A], associate a formula G[A, A2,..., A,] that is a
definition of A modulo F.

F=A & A;

F=(A = AAA= A) AN (A & Ay);

F=A|NA) AN A;

. F=(A1 =2 AAN(AVA)IAN—(ANA) AN (A= Al);
F=((A1=2AAN(A2= AN (A3 = A)N (A & (A & —A3)).

SRl

18. This exercise suggests another proof of the definability theorem.
Let F[A|, A2, ..., A,, A] be a propositional formula such that the formula

(F[A1, A2, ..., Ap, A]AF[A1,A2,...,Ap, BD = (A & B)

is a tautology. Recall that ¢ denotes the map from {0, 1}"**! into {0, 1} asso-
ciated with F (its ‘truth table’).

We define a map ¢ from {0, 1}" into {0, 1} as follows: for all elements ¢,
£2, ..., &n1n {0, 1}

0 ifor(er, €2 ...,6,0)=1
V(e &2, -0 80) = { 1 otherwise.
(a) Showthatif or(e1,€2,...,6n,1) =1, then ¥(e1,€2,...,6n) = 1.

(b) Let G = G[A}, Ay, ..., A,] be a formula that has  as its truth table (i.e.
is such that ¢ = ¥). Show that G is a definition of A modulo F, i.e. that
the formula

(F[A1, A2, ... Aps Al = (G[A1, A2, ..., An] & A))

is a tautology.
19. Consider a set with five propositional variables, P = {A, B, C, D, E}.

(a) How many formulas, up to logical equivalence, are satisfied by exactly
seventeen assignments of truth values?

(b) How many formulas, up to logical equivalence, are consequences of the
formula (A A B)?

20. Consider a set of propositional variables P.
Let §; denote the assignment of truth values on P defined by

51(A) =1 forevery element A € P.

(a) Show that forevery formula F, there exists at least one formula G that does
not contain the symbol — and is such that F is logically equivalent either
to G orto ~G.
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(b) Show that for every formula F, the following three properties are
equivalent:

(1) F 1is logically equivalent to at least one formula in which the only
connectives that may appear are A, V, and =.

(i1) F islogically equivalentto at least one formula which does not contain
the symbol —.

(iii) &{(F) = 1.

21. Consider a finite set of propositional variables P = {A1, A2,..., An}
On the set of assignments o f truth values on P, we define a binary relation <
by the condition

LK wpifandonlyifforalli € {1,2,...,n}, A(A;) < n(A;).

(a) Show that < is an order relation. Is it a total ordering?

(b) A formula F is called increasing if and only if for all assignments of truth
values A and g to P, if L < pt, then A(F) < L (F).
[sthe negationofa formula that is not increasing necessarily a nincreasing
formula?

(c) Show thatforevery formula F, F isincreasing if and only if:

(1) F is atautology, or
(i1) —F is a tautology, or
(111) there exists a formula G that is logically equivalent to F and in which
none of the three connectives —, =, and < occurs.

22. A set A of formulas of the propositional calculus is called independent if and
only if for every formula F € A, F is not a consequence of A — {F}.

(a) Which of the following sets of formulas are independent?

{(A= B),(B=0C),(C = A)}

{(A= B),(B=C), (A= ()}

{((AVB),(A=C),(B=C), (A= (Bv(O)}

{A,B,(A=C),(C = B)j

{(A=> BVv(),(C=-B),B=>(Av(),(BAC)< B),
(A= 0C),(B= A)};

{((A=>B)=C),(A=C(C),(B=0),(C=(B= A)),
((A= B) = (A < B))}.

For each of them, if it is not independent, find one (and, if possible,
several) equivalent independent subsets.

(b) Is the empty set independent? Provide a necessary and sufficient condition
for the independence of a set consisting of a single formula.
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(c) Show thatevery finite setofformulashasatleastone independentequivalent
subset.

(d) Show that for a set of formulas to be independent, it is necessary and suffi-
cient that all its finite subsets be independent.

(e) Doestheinfiniteset {A|, AiAA2, AiNANA3, ..., A{ANANA---NA,, .. )
have an equivalent independent subset? (The A; are propositional variables.)
Does there exist any independent set that is equivalent to it?

(f) Show that for any countable set of formulas { F1, F2, ..., F,, ...}, there
exists at least one equivalent independent set.

Given a set E, a graph on E is a binary relation G that is symmetric and
antireflexive (which means that forevery element x € E, (x, x) € G).
If k is a non-zero natural number and if G is a graph on E, we say that G is

&-colourable if and only if there exists a map f from E into {1, 2, ..., k} such
thatfor all (x, y) € G, f(x) £ f(y).
(a) Foreverypair(x,i) € E x{1,2,...,k},letA, ;beapropositional variable.

Define a set A(E, G, k) of formulas of the propositional calculus on the set
of variables A, ; that is satisfiable if and only if the graph is k-colourable.

(b) Show thatfor a graph to be k-colourable, it is necessary and sufficient that
all of its finite restrictions be k-colourable.

An abelian group (G, -, 1) is called orderable if and only if there exists a total
orderrelation < on G that is compatible with the group operation, which means
that for all elements x, y,and zof G,if x < y,thenx-z2 <Yy -zZ.

An abelian group (G, -, 1) is called torsion-free if and only i f for any element
x of G different from 1 and for any non-zero natural number #, x" is ditferent
from 1. (x* is defined by induction: x! = x and for all integers k > 1, x**1 ==
x - xk .

An abelian group (G, -, 1) is said to be of finite type if and only if it is
generated by a finite subset of G (which means that there is a finite subs¢:t
X C G such that the smallest subgroup of G that includes X is G itself).

We will use the following theorem from algebra (for example, see Theo-
rem 5.09 in The Theory of Groups by I.D. Macdonald, Oxford University Press,
1968) For every torsion-free abelian group of finite type (G, -, 1) that does not
reduce to the single element 1, there is a non-zero natural number p such that
(G, -, 1) is isomorphic to the group (ZP, +,0).

(a) Let (G, -, 1) be an abelian group. Take {A, y : (x, y) € G?} as the set of
propositional variables and write down a set A(G) of formulas of propos:-
tional calculus that is satisfiable if and only if the group G is orderable.

(b) Show thatfor an abeliangroup to be orderable, it is necessary and sufficient
that all of its subgroups of finite type be orderable.

(c) Show that for an abelian group to be orderable, it is necessary and sufficient
that it be torsion-free.
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25. Consider two sets E and F and a binary relation R C E x F.
For every element x € E, let R, denote the set of elements of F that are
related to x under R:

R,={ye F:(x,y) € R}.

Forevery subset A C FE,the following setiscalled the image of A under R:
Ry = U R,.
XEA
We make the following two hypotheses:

(I) For every subset A of E, the cardinality of R, is greater than or equal to
the cardinality of A.

(IT) Forevery element x € E, the set R, is finite.
The purpose of this exercise is to prove the following property:

(III) There exists an injective map f from E into F such that forevery element
x € E, f(x) € Ry (i.e. an injective map from E into F that is included
in R).

(a) Suppose that E is finite. Without using hypothesis I1, prove III by induction
on the cardinality of E by examining two cases:

1. there is at least one subset A of £ suchthat A # (), A # E, and
card(A) = card(R,);
2. for every non-empty subset A G F, card(A) < card(R,).
(b) Give an example in which I is true while [I and III are false.

(c) By using the compactness theorem, prove III when E is infinite.



2 Boolean algebras

When we identify logically equivalent formulas of the propositional calculus, we
obtain a set on which, in a natural way, we can define a unary operation and
two binary operations which correspond respectively to negation, to conjunction,
and to disjunction. The structure obtained in this way is an example of a Boolean
algebra. Another example of a Boolean algebra is provided by the set of subsets
of a given set together with the operations of complementation, intersection, and
union (which, by the way, are often called Boolean operations).

There are diverse ways of approaching Boolean algebras. While we will begin
with two purely algebraic presentations (as rings or as ordered sets), we wiil
discover at the end of the chapter that we can just as well adopt a topological
point of view: every Boolean algebra can be identified with the set of those subsets
of some compact, zero-dimensional space that are both open and closed. The
reader should not be concerned by these perhaps unfamiliar words; Section 2.1
will contain all the necessary reminders, both from algebra and topology (we
nonetheless assume that the reader does know the definitions of ring, field, and
topological space; if not, the reader should consult, for example, A Survey of
Modern Algebra by Garrett Birkhoff and Saunders Maclane (A. K. Peters Lid,
1997) and the text General Topology by John L. Kelley (Springer-Verlag, 1991).

Section 2.2 contains the algebraic definitions and corresponding basic proper-
ties. A Boolean algebra is a ring in which every element is equal to its square; but
it is just as well a distributive, complemented lattice, i.e. an ordered set in which:
(i) there is a least element and a greatest element, (ii) every pair of elements has
a lower bound and an upper bound, each of these operations being distributive
with respect to the other; and, finally, (iii) every element has a complement. We
will establish the equivalence of these two points of view and study examples.
Section 2.3 is devoted to atoms: non-zero elements that are minimal with respect
to the order on the Boolean algebra. This important notion arises frequently in
what follows, especially in several exercises.

In Section 2.4 we are interested in homomorphisms of Boolean algebras. As
always in algebra, the kernels of these homomorphisms (which in this context are
ideals) play an essential role. When we consider a Boolean algebra A as a lattice,
we prefer to study not the ideals but rather the filters which are canonically asso-
ciated with them (we obtain a filter by taking the complements of the elements of
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an ideal). Study of these ideals and filters is the ob jective of Section 2.5. Particular
attention is paid to maximal filters or ultrafilters, which obviously correspond to
maximal ideals, but also correspond to homomorphisms of A into the Boolean
algebra {0, 1}. The set of these homomorphisms is given a topology: this is then
called the Stone space of A, a space which is studied in the sixth and last section of
this chapter. The compactness theorem for propositional calculus, which we will
prove using topology in Section 2.1, is related in a natural way to the compactness
of the Stone space of the algebra of equivalence classes of logically equivalent
formulas (Exercise 13).

2.1 Algebra and topology review
2.1.1 Algebra

Consider a commutative ring with identity A = (A, +, %, 0, 1).
We will always assume that in such a ring, we have 0 £ 1. As is customary,

either of the notations a x b or ab will denote the product of two elements
a and b of A.

Definition 2.1 Anideal of A is a subset I of A such that
o (I,+,0)isasubgroup of (A, +, 0);

e Forevery element x of I and for every element y of A, x x y € I.

The set A itself obviously satisfies these conditions. An ideal of .A distinct from
A is called a proper ideal. An ideal I of A is a proper ideal if and only if 1 ¢ 1.
(If I = A,then1 € I;if 1 € I, then for every element yof A, 1 x y =y € I,
hence A = 1I).

We will only consider proper ideals here. So for us, an ideal of A will be a
subset / of A which, in addition to the two conditions above, satisfies the following

property:.
o 1¢1.

To adopt this point of view can sometimes be inconvenient: for example, given
two ideals 7 and J of A, there may not be a smallest ideal containing both /7 and
J because the sum of two ideals / and J, i.e. the set

I+J={xeA:@ByeN@zeJ)x =y+2)}

which usually plays this role, may well not be a proper ideal. For instance, in the
ring of integers Z, the sum of the ideals 27 (the set of multiples of 2) and 3Z is
the entire ring Z.

Nonetheless, these potential inconveniences are not bothersome in the current
context. The reader who absolutely insists on preserving the usual definition of
ideal should, in what follows, replace ‘ideal’ by ‘proper ideal’ everywhere.
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Krull’s theorem can be stated this way:

Theorem 2.2 Every ideal in a commutative ring with identity is included in at
least one maximal ideal.

(An ideal is maximal if it is not strictly included in any other ideal.)

Proof The proof uses Zorn’s lemma (see Chapter 7 in Part 2). Let I be an ideal
in the ring A. Let £ denote the set of ideals in .A that include /;

E={Jeg(A):Jisanidealand I C J}.

The theorem will be proved if wecan establish the existenceof at least one maximal
element in the ordered set (£, C). For this it suffices (Zorn’s lemma) to show that
this ordered set is non-empty (but this is clear since / € £) and that every non-
empty totally ordered subset of £ has an upper bound in £. So let X be a subset!
of £ that is totally ordered by the relation of inclusion (also known as a chain in
(€. <)); we assume that X 1s not empty. Let /o be the union of the elements of
X: 1 = |UJ,;cx J.- As X is not empty and as any element of X includes /. [ is
includedin /g, thus 0 € /o.If x and y are elements of /¢, there are two ideals J and
K in X suchthatx € J and y € K. As X is totally ordered, we have either / C K
or K C J. If we are, for example, in the first situation, then x € K and y € K
therefore x — y € K and x — y € [o. It follows that (lp, +,0) is a subgroup of
(A, +,0). Aswell,if x € Igpand y € A, thenforat least oneideal J € X, we have
x € J, hence xy € J and xy € Io. Finally, we have 1 ¢ I, for in the opposite
case, 1 would belong to one of the elements of X, which is forbidden. We have
thus established that /g is an ideal of A which includes 7, i.e. is an element of £
Foreach J in X, J C Ip: it follows that /g is, in £, an upper bound for the chain X

B

Let / be an ideal in the ring .A. We define an equivalence relation on A called
congruence modulo / and denoted by =:

for all elements x and yof A, x =y yifandonlyif x —y € I.

The fact that this is an equivalence relation is easily proved. Let a denote the
equivalence class of the element @ € A. We have 0 = 1. Congruence modulo 7 is
compatible with the ring operations + and x: this means that if a, b, ¢, and d are
elements of A,ifa =) candb =; d,thena+b =, c+danda x b =) ¢ x d.
This allows us to define two operations on the set A/ =, of equivalence classes,
which we will continue todenote by + and x, defined by: forall elements x and y
of A, x+y=x+yandx x y = x x y. These two operations on the set A/ =,
give it the structure of a commutative ring with unit (the zero element is /, the unit
element is 1) called the quotient ring of A by the ideal / and denoted by A/[ rathes
than by A/ =,. All required verifications are elementary. The most well-known
example of what we have just described is given by the rings Z./nZ (where n is a
natural number greater than or equal to 2).
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Theorem 2.3 The quotient ring A/l is a field if and only if the ideal I is maximal.

Proof If we suppose that I is not maximal, we can choose an ideal J of A such
that / C J (strict inclusion). Let a be an element of J that does not belong to /.
We have a # I, hence a is a non-zero element in the quotient ring. If this element
were invertible, there would be an element b € A such thatz x b = 1, which is to
say ab =; 1, orequivalently ab — 1 € I,soalso ab — 1 € J. Becausea € J and
J is an ideal, ab € J. Thus the difference ab — (ab — 1) = 1 would belong to J,
which is impossible. It follows that there is at least one non-zero, noninvertible
element in the ring A/1: it is therefore not a field.

Now suppose that I is maximal. Let @ be an element of A such thata # 0
(equivalently, a ¢ I). Our goal is to show that a is an invertible element of the
quotient ring A/ 1. Consider the following set:

K={xeA:3yeA)(3zel)x =ay+2)}

Itis easy to verify that (K, +, 0) is a subgroup of (A, +,0): firstof all, 0 € K
since 0 = (a x 0) + 0; also, if x; € K and x2 € K, then we can find elements yj
and y2 in A, and z; and z2 in /, such that x; = ay; + z1 and x2 = ay; + z2; we
conclude from this that

xy —x2 =a(y1 —y2) +21 — 22,

that yj — yp € A, and that z; — z2 € I, thus x; — x2 € K. On the other hand, if
x € K andt € A, then xt € K:indeed, there are elements y € A and z € I such
that x = ay + z, thus xt = a(ty) + tz; butty € Aandtz € I, so xt € K. This
shows that the first two conditions in the definition of an ideal are satisfied by K.
If the third of these conditions were also satisfied (thusif 1 ¢ K), K would be an
ideal in A. But the set K strictly includes the set /: indeed, every element x of /
can be written x = (a x 0) + x, and thus also belongs to K; and the element a,
which can be written (a x 1) + 0, belongs to K but not to /. As I is a maximal
ideal, K could not then be an ideal in A. We conclude from this that 1 € K. So
we can then find two elements y € A and z € I such that

ay+z=1.

Sowehave 1 —ay = z € I. or equivalently, passing to the equivalence classes
for the relation =7, 1 — ay = 0, which translates as @ x y = 1. So the element @
does have an inverse in the quotient ring A/ /.

We have thus shown that every non-zero element of this ring is invertible: A /1
is therefore a field. O

Observe that the proof we have just given contains an illustration of what we said
earlier concerning the sum of two ideals. Indeed, the set K which we considered
is the sum of the ideal I and what is known as the principal ideal generated by a
(1.e. the ideal consisting of multiples of a). We found ourselves precisely in the
situation in which this sum of ideals is the entire ring.
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2.1.2 Topology

Let X be a topological space and Y a subset of X. We give Y a topology, called the
topology induced on Y by that of X, by taking as the open sets in this topology
the intersections with Y of open subsets of X. In other words, for a subset 2 C Y
to be open in the induced topology, it is necessary and sufficient that there exist an
open set O in the topology on X such that 2 = O N Y. We see immediately that
the closed sets for the induced topology on Y are the intersections with Y of the
closed subsets of X. When we speak of a subspace of a topological space X, we
mean a subset with its induced topology.

A basis for the open sets of a topological space X is a family (O;);es of open sets
in the topology such that every open set is a union of open sets from this family;
in other words, for every open set G, there is at least one subset / C [ such that
G =J jes Oj. When a basis for the open sets of a topological space has been
chosen, the elements of this basis are called basic open sets. The complements in
X of'the basic open sets are called basic closed sets and it is clear that every closed
sel is an intersection of basic closed sets. For the usual topology on the set R of
real numbers, the bounded open intervals (i.e. sets of the form ]a, b[ wherea € R,
b € R and a < b) constitute a basis for the open sets. Moreover, it is obvious that
in any topological space whatever, the family of all open sets is a basis for the open
sets. The following property is immediate:

Lemma 2.4 If(O;);e, is a basis for the o pen sets of the topological space X and
if Y is a subset of X, then the family (O; N Y);eys is a basis for the topology on 'Y
induced by that of X.

This means that the intersections with Y of the basic open subsets of X are basic
open subsets of Y.

Let X and Y be two topological spaces. A map f from X into Y is called
continuous if and only if the inverse image under f of every open subset of Y is
an open subset of X. In other words, f is continuous if and only if, forevery open
subset €2 of Y, the set f_] [RQ2] = {x € X: f(x) € 2} is an open subset of X.

Lemma 2.5 Let (2;)ies be a basis for the open subsets of a topological space
Y and let f be a map from X into Y. For [ to be continuous, it is necessary and
sufficient that for everyindexi € I, f'[Qi] be an open subset of X .

Proof This is necessary due to the definition of continuity (something that musi
holdforall the open subsets of ¥ mustholdinparticularforthe basic open subsets).
This is sufficient since, if €2 is any open subset of Y, then there is a subset J C [
such that @ = J;¢, 0j, hence f7'[Q] = ;c, f7'10]] (this last fact is a
well-known property of inverse images); if all of the £~ '[ O;] are open subsets of
X, f~1[2] will be a union of open subsets, and hence an open subset of X. W

Definition 2.6 A homeomorphism of the topological space X onto the topolog-
ical space Y is a bijective, continuous map from X into Y whose inverse is a



68 BOOLEAN ALGEBRAS

continuous map from 'Y into X. (We speak in this context of a bijective bicontinu-
ous map).

Definition 2.7 A topological space X is called Hausdorff (or separated) if and
only if for every pair of distinct elements x and y of X there exist disjoint open
sets G and H such that x € G and y € H. It is immediate that every subs pace of

a Hausdorff space is Hausdorff.

Lemma 2.8 Let X be a topological space that is Hausdorff and let Y be a subset
of X. Then the topology inducedon Y by that of X makes Y a Hausdorff space.

Proof If x and y are distinct points of Y, the intersections with ¥ of two disjoint
open subsets of X that contain x and y respectively will be two disjoint open
subsets of ¥ that contain x and y respectively. |

Definition 2.9 A covering (or cover)of a topological space X is a family (E;);er
of subsets of X such that X = \J;.; E;. If all of the E; are open sets, we speak
of an open covering (or open cover). A subcovering of a covering (E;)icj is
a subfamily (E;)jcs (J € I) which is itself a covering of X. We will speak
of a finite covering (or subcovering) when the corresponding set of indices is
finite.

Definition 2.10 A ropological space is called compact if and only if 1°) it is
Hausdorff and 2°) from every open covering of X we can extract a finite
subcovering.

Lemma 2.11 Let X bea Hausdorff space. For X to be compact, it isnecessary and
sufficient that every family of closed subsets of X whose intersection is non-empty
have a finite subfamily whose intersection is non-empty.

Proof It suffices to observe that if (F;);¢; is a family of closed subsets of X and
if, foreach i € I, we denote the complement of F; in X by O; (which is an open
set), then [);; Fi = @ ifand only if | ;c; O; = X. Thus, toeach family of closed
subsets of X whose intersection is empty, there corresponds, by complementation,
an open covering of X, and vice versa. |

Lemma 2.12 Let (£2;);¢; be a basis for the open sets of a Hausdorff space X.
For X to be compact, it is necessary and sufficient that from every covering of X
by basic open sets we can extract a finite subcovering.

Proof The condition is obviously necessary. Assume it is satisfied and that
(Gi)rek is a covering of X by arbitrary open sets. We have X = |,y G,
but since each Gy is a union of basic open sets, we have a covering of X by a
family of basic open sets (£2;) jes (J € I), with each €2, included in at least one
of the open sets Gy. So, given our assumption, we can extract from this cover-
ing a finite subcovering and we will have, for example, X = Q; U Q;, U---U
€2, . It is now sufficient to choose open sets Gy, Gg,, . - ., G, from the family
(Gr)rex whichinclude @, €2;,, .. ., €2, respectively; we will then have a finite
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subcovering from (G¢)kek since X = G, UGy, U- - -UGy,, . This proves that X is
compact. |

Naturally, the previous property can be rephrased in terms of closed sets:

Lemma 2.13 Let X be a Hausdorff space with a given basis for the open sets.
For X to be compact, it is necessary and sufficient that from every family of basic
closed sets whose intersection is empty, we can extract a finite subfamily whose
intersection is already empty.

Definition 2.14 A subset of a topological space X that is simultaneously open
and closed (i.e. an open subset whose complement in X is also open) will be called
clopen.

Definition 2.15 A topological space which has a basis consisting of clopen sets
is called zero-dimensional. For example, in the space Q of rational numbers, the
bounded open intervals whose endpoints are irrational constitute a basis of clopen
sets for the usual topology (as is easily verified): thus Q is a zero-dimensional
topological space.

Lemma 2.16 For a topological space to be zero-dimensional, it is necessary and
sufficient that the family of clopen subsets be a basis for the open sets.

Proof It is obvious that any family of open sets that includes a basis for the
open subsets of X is itself a basis for the open subsets of X. Thus, if X is zero-
dimensional, then the family of all its clopen subsets is a basis for the open sets.
The converse is immediate. ]

Lemma 2.17 Every subspace Y of a zero-dimensional topological space X is
zero-dimensional.

Proof Let (O;);cs be a basis for the open subsets of X consisting of clopen sets.
The family (O; NY),<; is a basis for the open subsets of ¥ (Lemma 2.4) but these
open sets are also closed subsets of ¥ since they are the intersections with ¥ of
closed subsets of X. )

Definition 2.18 A compact zero-dimensional topological space is called a
Boolean space.

Definition 2.19 Let (X;);c; be a family of topological spaces. On the product
[1;c; Xi of this family, we can define a topology by taking as the basic open sets
all subsets of the form [ |;.; O; where, for each index i € I, O; is an open subset
of Xi, but where for all but finitely many indices i, we have O; = X;. It is easy to
verify that the collection consisting of unions of sets of this type is closed under
intersections and arbitrary unions. It is this collection of sets that we take as the
family of open sets for the topology on [ |;c; Xi. The topology defined in this way
is called the product topology.
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Tychonoff’s theorem asserts that:

Theorem 2.20 The product of any family of compact topological spaces is a
compact topological space.

The proof makes use of Zorn’s lemma and can be found, for example, in
the text by J.L. Kelley (General Topology, Van Nostrand, 1955, republished by
Springer-Verlag, Graduate Texts in Mathematics, 1991) (but it has the drawback
of using the notion of filter which will be studied later in this chapter).

Let us now examine the special case which will interest us in this chapter
(Section 2.6): the case in which each X; in the family of spaces (X;);e; is the
set {0, 1} with the discrete topology (the one in which all subsets are open).

In this case, the product [;; X, is the set {0, 1}/ of maps from / into {0, 1}.

To produce a basic open set €2 in the product topology, we must take a finite
number of indices, i1, {2, - . ., it in I andopen sets O;,, O;,, ..., O;, from {0, 1},
which, in this case, are arbitrary subsets of {0, 1}. We then set

Q= {0, 1) 7Vnizemid 5 0; % Oy X -+ x Oy,
or alternatively
Q={fe{0,1}: f(i1) € O; and f(ir) € Oy, and ...and f(ix) € O;,}.

It is natural to suppose that we are really interested only in those indices i; for
which the corresponding open set is something other than the set {0, 1} itself. It
1s also pointless to consider cases in which one of the O;; is the empty set, for
we would then have §2 = ¢). There remain only two possible choices for the O;;:
O[j = {0} or Oij = {1}

Thus we see that to produce a basic open set £2 in the product topologyon {0, 1),
w e must take a finite number of indices i1, i2, .. ., i, in I and the same number of
elements €1, €2, ..., ek 1in {0, 1} and then set

Q={f¢€ {0,1}’ : f(i1) =g and f(i2) = ez and ...and f(ir) = ).

A basic open set, therefore, is the set of all maps from /7 into {0, 1} which assume
given values at some finite number of given points.

Observe that the complement in {0, 1}/ of the set §2 that we just considered is
the following set:

U ifet0, 1) : fGj) =1—¢j).

I<j<k

So it is the union of k basic open sets, which is obviously an open set. We
conclude that €2 is a closed set.
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The basic open sets in the topology on {0, 1} are therefore clopen sets. Conse-
quently, we have proved:

Lemma 2.21 The topological space {0, 1}! is zero-dimensional.

Since the discrete space {0, 1} is clearly compact, we may conclude, using
Tychonoff’s theorem, that:

Theorem 2.22 The space {0, 1}! is a Boolean topological space.

2.1.3 An application to propositional calculus

Tychonoff’s theorem allows us to give a very rapid proof of the compactness
theorem for propositional calculus (Theorem 1.40).

Proof Let P be a set of propositional variables and let F denote the associated
set of formulas. Foreach F' € F, let A(F’) denote the set of assignments of truth
values that satisfy it:

A(Fy= {8 ef0, 1}V :§(F)=1}.

If A1, Ap, ..., A, are the variables that occur in the formula F, we see that the
set /2(F’) is a union of sets of the form

(6§ €{0,1} :8(A)) =¢; and §(A2) = &5 and ...and §(Ag) = &k},

where the ¢; are elements of {0, 1}.

Indeed, the satisfaction of a formula F by an assignment é does not depend on
the values that § assumes outside the set {Ay, A2, ..., Ay} (Lemma 1.19).

So the set A(F) is a union of basic open sets in the topological space {0, 1
This is a finite union: it involves at most 2" sets. So we conclude that A(F) is itself
a clopen set.

Now consider a set of formulas 7 € F that is not satisfiable. This means,
precisely, that the intersection, ()zey A(F), is the empty set. Thus the family
(A(F)) per 1s, in the compact space {0, 1 1P, a family of closed sets whose inter-
section is empty. So it is possible to extract a finite subfamily whose intersection
is already empty; so there is a finite subset To C 7 such that [gcq, A(F) = 0.
This means that there is some finite subset of 7" that is not satisfiable. This proves
(version 2 of) the compactness theorem for propositional calculus. |

M.

In Exercise 13, we will encounter another proof of this compactness theorem;
this proof will make use of the results from Sections 2.5 and 2.6 and will avoid
any appeal to Tychonoff’s theorem, for which we have not given a proof.

2.2 Definition of Boolean algebra

Definition 2.23 A Boolean algebra (sometimes called a Boolean ring) is a ring
(A, +, x,0, 1) in which each element is an idempotent for multiplication (i.e. is
equal to its square).



72 BOOLEAN ALGEBRAS

Example 2.24 Thering (Z /27, +, %, 0, 1).

Example 2.25 Thering {(o(E), A, N, H, E), where E is an arbitrary non-empty
set, A and N are the operations of symmetric difference and intersection respec-
tively on the set g0 (E) of all subsets of E (see Exercise 2).

Example 2.26 Another interesting example is furnished by propositional
calculus.

Considera setof propositional variables and the corresponding set 7 of formulas.
As we will make precise in Exercise 1, the set 7/ ~ of equivalence classes of
logically equivalent formulas with the operations of < and A has the structure of
a Boolean algebra (these operations can be defined on this set because the relation
~ is compatible with the propositional connectives). The class 0 of antilogies and
the class 1 of tautologies are, respectively, the identity elements for the operations
< and A. We will have occasion to return to this example, which is in fact our
principal motivation for studying Boolean algebras.

2.2.1 Properties of Boolean algebras, order relations
Lemma 2.27

e Inany Boolean algebra, every element is its own additive inverse.

e Every Boolean algebra is commutative.

Proof Let (A, +, x, 0, 1) be a Boolean algebra and let x and y be elements of
A. From the definition, we have x2 = x, y* = y, and (x + y)? = x + y, while
moreover, as in any ring, we have

(x +y)? =x* +xy+ yx + y*.

S owe may conclude

X+y=x+xy+yx +y,

or after simplification, xy 4+ yx = 0. Letting y = 1, we obtain in particular that
x+x = 0or x = —x, which proves the first point. For arbitrary x and y therefore,
xy is the inverse of xy, but since xy + yx == 0, it is also the inverse of yx. From
this we conclude that xy = yx and that the algebra is commutative. ]

Remark 2.28 The Boolean ring (7./27., +, %, 0, 1) is the only Boolean ring that
is a field, and even the only Boolean ring that is an integral domain: indeed, the
relation x* = x, which is equivalent to x(x — 1) = 0, requires, in an integral
domain, that x =0 or x = 1.

Let (A, +, %, 0, 1) be a Boolean algebra. We define a binary relation <on A as
follows: for all elements x and y of A, x < y if and only if xy = x.
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We will now verify that this is indeed an order relation. For all elements x, y,
and z of A, we have

2 = x by definition;

e x < x, since x

e if x < yandy < z,then xy = x and yz = z; hence, xz = (xy)z = x(yz) =
Xy =x,s0x < Z;

e ifx <yandy < x,then xy = x and yx = y, hence x = y by commutativity.
So the relation < is reflexive, transitive, and antisymmetric.
The following theorem lists the main properties of this order relation.

Theorem 2.29

(1) 0 is a least element and 1 is a greatest element for the relation <.

Proof Indeed,forevery x,0 x x =0and1 x x = x, hence 0 < x and x < 1.
[

(2) Any two elements x and y of A have a greatest lower bound (i.e. a common
lower bound that is greater than any other common lower bound), denoted by
x ~~ y: specifically, their product xy.

Proof We have (xy)x = x%y = xy and (xy)y = xy?> = xy, thus xy is a lower
bound both for x and for y. Moreover, if z is a common lower bound for x and y,
we have zx = zand zy = y, hence z(xy) = (zx)y = zy = z, which means that
z < xy; thus xy is the greatest of the common lower bounds for x and y. ]

(3) Any two elements x andy of A have a least upper bound (i.e. a common upper
bound that is smaller than any other common upper bound), denoted by x ~ y:
specifically, the element x + y + xy.

Proof Indeed,
x(x+y+xy)=x2+xy+x2y=x+xy+xy=x+0=x,

and in analogous fashion, y(x + y + xy) = y.So we certainly have x < x + y +
xy and y < x + y 4+ xy. On the other hand, if z is an element of A such that x < z
and y < z, which is to say xz = x and yz = y, then

(x+y+xy)z=xz+yz+xyz=x+y+xy,

sOx +y+ xy < z;thus x + y + xy is the least of the common upper bounds for
x and y. ]

(4) The operations ~ and — thus defined on A are associative and commutative.

Proof This is true (and very easy to prove!) in any ordered set that satisfies
properties (2) and (3). [
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(5) 0 is an identity element for the operation — and an absorbing element for the
operation ~; while 1 is an identity element for the operation ~ and an absorbing
element for the operation .

Proof To put this another way, for every element x of A, we have x « 0 = x,
x ~0=0,x ~1=xandx « 1 =1. Thisistruein any ordered set that satisfies
properties (1), (2), and (3). It is trivial to verify this. u

(6) Every non-empty finite subset {x1, x2, ... ,xx} of A (k € N*) has a greatest
lower bound equal to x; ~ x2 ~ --- ~ xx and a least upper bound equal to
X] S~ X2~ - X

Proof Exceptfortheobvious case in which k = 1, thisis a simple generalization
of properties (2) and (3) which we naturally obtain by induction on k.

We wish to call your attention to the following fact: the expression x; ~ x2 ~
- -« ~ Xk 1s not a new notation intended to denote some newly introduced object.
It denotes an element of A that is legitimately defined (by induction) as soon as
the operation ~ has been defined (it is the element that we ought to denote by

((-..((x1 ~ x2) ~x3) ~ -+« ~ Xf—1) ™ Xk),

an expression that contains k — 1 pairs of parentheses, which wehavesuppressed in
view of associativity. Concerning the operation ~, property (6) asserts two distinct
facts: first, that the elements x|, x2, ..., xx have a greatestcommon lower bound;
and second, that this greatest common lower bound is

X1 58X 7™ o S5 Xk

The proof of these twofacts is certainly extremely simple (indeed, we have avoided
giving it!), but the difficulty perhaps lies in determining precisely what needs to
be proved. (The same remark applies, of course, to the operation ). ]

(7) Each of the operations — and ~ is distributive over the other.

Proof On the one hand,

x~(yv2)=x(y+z-t+yz)=xy+xz+xyz
=xy+xz+xy-xz2=(x~y)~(x ~2)

for any elements x, y, and z of A which guarantees that ~ distributes over .
On the other hand, with x, y, and z still arbitrary elements of A,

(xey)~nlxwz)=(x+y+xy)x+z+x2)
= x% 4 xz +x%z+ yx -+ yZ - yxz -1—x2y +xyz + xzyz
=x+ yz +xyz

after obvious simplifications.
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But x + yz+ xyz = x —« (yz) = x « (y ~ 2), hence the other distributive
property. B

(8) For every element x in A, there is an element x' in A called the complement of
x suchthat x~x =1, and x~x' = 0.

Proof I[f such an element x’ exists, it satisfies xx’ = 0 and x + x’ + xx’ = 1,
hence also x + x’ = 1, oragain x’ = 1 + x. [tis easy to verify on the other hand
thatx v 1+ x)=1andx ~ 1+ x) =0.

We have thus established not only the existence but also the uniqueness of the
complement of x: itis 1 + x. ]

(9) The map x +> 1+ x from A into A is a bijection that reverses the order.

Proof This map is even an involution (a bijection that is its own inverse) since,
for every x, 1 4+ (1 + x) = x. On the other hand, for any elements x and y, we
have

A+x)A+y)=14+x+y+xy.

This element is equal to1 + x if and only if y + xy = 0, or again xy = y. We see
in this way that1 +x <1 +yifandonlyify <x. L]

Remark 2.30 The order relation in a Boolean algebra is compatible with multi-
plication: this means that if the elements a, b, c, and d satisfy a < b and c < d,
thena x c <bxd(iffaxb=aandc xd =c,thena xc xb xd = a x c).
The important fact to retain is that this order is not compatible with addition: for
example, we have 0 < 1, but we do not have 0 +1 <1+ 1.

Here is a property that we will frequently use:

Lemma 2.31 Forany elements x and y of A, we have x < 1 + y if and only if
xy = 0.

Proof Indeed, x < 1 4+ y means by definition that x(1 + y) = x, or again
x + xy = x, which is certainly equivalent to xy = 0. L

2.2.2 Boolean algebras as ordered sets

In fact, properties (1), (2),(3),(7),and (8) from Theorem 2.29 characterize Boolean
algebras, as the following theorem shows; it also provides us with a second method
for defining Boolean algebras.

Theorem 2.32 Let (A, <) be an ordered set with the following properties:

(a) there is a least element (denoted by 0) and a greatest element (denoted
by 1);
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(b) any two elements x and y have a least upper bound (denoted by x ~- y) and
a greatest lower bound (denoted by x ~ y);

(c) each of the operations — and ~ is distributive over the other,

(d) for every element x in A, there is at least one element x' in A such that
x~x'=1land x ~ x' =0.

Then A can be given the structure of a Boolean algebra (A, +, x, 0, 1) in such
a way that the given order < on A will coincide with the order that is associated
with its Boolean algebra structure (i.e. we will have x < y if and only if xy = y).

The proof will be given in several stages.

e Preliminary remarks: An ordered set that has properties (a) and (b) of the
theorem 1is called a lattice. If it also has property (c), it is called a distribu-
tive lattice. If it is properties (a), (b), and (d) that are satisfied, we speak of a
complemented lattice, where the complement of an element x is the unique
element x’ for which x ~~ x’ = 1 and x ~ x’ = 0. Uniqueness is easy
to prove:

Proof Suppose that x” and x” are each complements of x and consider the element
y = (x ~ x’) — x”. On one hand, y is equal to 0 ~ x”, and hence to x”. On the
other hand, distributivity leads us to

y=x—wx)Y~(x' v x)=1~& v xN=x"wx".

So we have x” = x’ «» x”, which means x’ < x”. By interchanging the roles of

x" and x” in this argument, we naturally obtain x” < x’, and, inthe end, x’ = x”.
B

The completment of the element x will be denoted by x°. We obviously have
1° = 0 and 0° = 1. Observe that as a consequence of the uniqueness of the com-
plement, the map x +— x° from A into A is a bijection that is equal to its own
inverse (forevery x, (xD = x).

Note in addition that, as we have already observed, when hypotheses (a), (b),
(c), and (d) are satisfied, so too are properties (4), (5), and (6) from Theorem 2.29.

e We will now establish what are generally known as de Morgan’s laws:

Lemma 2.33 For any elements x and y of A,

x ~»P=x" <y and

xv y)t=xt~ yC.

Proof The second law follows from the first by replacing x with x* and y with
y¢ and then using the properties of complementation.



DEFINITIONOF BOOLEAN ALGEBRA 71

To prove the first law, we show that (x®~ y’) < (x ~y) =1 and that
(xc ~ yc) ~ (x ~ y) = 0: to do this, we use the distributivity of the operations
— and ~ as well as their associativity and commutativity:

(E =) wam = () vx) ~ (=) ey)
=1v)y)~(x*vl)=1~1=1,

()~ = rxny) o ()~ x~y)
=0~y))v0~x)=0-0=0.

e De Morgan’s laws generalize immediately (by induction) as follows:

Lemma2.34 Forany integer k > | and elements x1, x2, ..., x, from A,
(xg ~x2 — -+~ ﬁxk)czx?vxgv---vxg and
(X) ~ x3 ~ -+ vxk)czx?f\ng\'-'f\xg.

e We will now define an addition + and a multiplication x on the set A: for all x
and y, we set
xxy=x~y and
x—|-y= (Xr'\yc) u(xc /\y).

We can obtain another expression for x + y by using the fact that -« distributes
over

x-%-y=(xuxc)ﬁ(xvy)f\(ycvxc)m(ycuy)
=1~(x—y ~(x*<y) ~1 hence
x+y=(x<wy ~(x"<yb). (%)

We will now prove that (A, +, x, 0, 1) is a Boolean algebra.

Proof

2

e The property ‘for all x, x* = x” is immediate (x ~ x = x);

e (A, +,0)is a commutative group:

* commutativity follows immediately from that of ~~ and -.

* () is an identity element for addition: for all x in A,

x+0=(xﬂOB)u(xcr“-O):(xfxl)uO:xu0=x.
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* every element x of A has an inverse: namely, itself:
x—[—x:(xrwxc) v(xcﬁx)-:OuO:O.
* Addition is associative: if x, y, and z are elements of A, we have

x+)+z=([x+yl~2) < ((x+yI°~2)

(using the definition of +)

=[x~ ) = (F ~y)] ~ )~ (x +F ~2)
(using the definition of +)

=[x~ )= EAN]~ ) ([~ (E ey ~2)
(using (»))

= ([(x ~ ) = ()]~ )= ([ ' = (5= )]~ 2)
(by de Morgan’s laws)

=([(x ~ ) = (F ~ )]~ ) = ([(F ~ ) ~ = )] ~ 2)
(by de Morgan’s laws)

=[x~y L) vy~ ) - [(F~ Y~ o)
“(x~yn~7)]
( ~ distributes over — ).

At last, using the associativity of -, we obtain
(x—|—y)—{—z=(xr\yﬁr\zc)u(xcr\yf\zc)\_/( Cr\ycr\z)u(xmyﬁz),

The commutativity of - and ~ implies that all permutations on x, y, and z
produce this same result. In particular, (x + y) +z = (y + z) + x, but since the
addition operation is commutative, we also have

x+y+z=x+(y+2)-

e The multiplication x is associative and has 1 as an identity element: these are
obvious properties of the operation ~.

e Multiplication distributes over addition: toprove this, we again invoke the asso-
ciativity and commutativity of - and ~, the distributivity of ~ over —, together
with de Morgan’s laws. This time we will omit the justifications of each step in
the calculation; the reader will have no difficulty supplying them.
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Let x, y, and z be elements of A. We have

xy+xz=(x~y)+(x~2)
=[x~y ~(x~ 2] =[x ~ 3~ (x ~ D]
— :(xr\y)f-\(xcvzc)]u[(xc\-’yc)’“(X’“Z)]

(xryox) e xny )] [ ~xng) w (P mxn)]

=(x~y~2f) - (x~y o)
=x~[(y ~ &)~ ('~ 2)]
=x ~[y+2z]

= x(y + 2).

This completes the proof that (A, 4, x, 0, 1) is a Boolean algebra. [

Let <« denote the order associated with this structure. For any elements x and
yof A, x K y if and only if xy = x, or again, x ~ y = x, but this last equality
means precisely that x is less than or equal to y for the order < given initially on
A. It follows that these two orders coincide.

Therefore, a Boolean algebra is, optionally, a ring in which every element is
equal to its square, or an ordered set which has the structure of a complemented,
distributive lattice.

Without making this a strict rule, we will tend to adopt the second point of view
in the rest of the course.

For the case given in Example 2.25 of the set of subsets of a given set, this point
of view is more natural than the first. The order relation is the inclusion relation.
The operations «~ and ~ are, respectively, union andintersection. The complement
of an element is its set-theoretic complement (see Exercise 2).

In what follows, regardless of the point of view adopted, we will allow ourselves
to use, simultaneously, the order relation <, multiplication and addition, and the
operations -« and .

2.3 Atoms in a Boolean algebra

Definition 2.35 An element A in a Boolean algebra (A, <, —, ~, 0, 1) is called
an atom if and only if it is non-zero and has no non-zero strict lower bound.

In other words, a is an atom if and only if a # 0 and, for every element b 1n A,
if b < a, theneitherb =a orb = 0.

Example 2.36 In the Boolean algebra g (E) of subsets of the set E, the atoms
are the singletons (i.e. subsets containing a single element).
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Example 2.37 There are Boolean algebras without atoms: this is the situation
for the Boolean algebra F/ ~ of equivalence classes of formulas of propositional
calculus when the set P of propositional variables is infinite (see Example 2.26).

Proof The order relation 1n this Boolean algebra is the following (Exercise 1):

if F and G are formulas,

then cl(F) < cl(G) if and only if the formula (F = G) is a tautology.

To prove that there are no atoms in F/ ~, we will show that every non-zero
element has a strict lower bound other than 0. So consider a formula F such that
Cl(F) # 0, i.e. such that -~ F is not a tautology, or equivalently that there is at least
one assignment of truth values to P that satisfies F. Choose such a distribution
and denote it by 8. Also choose a propositional variable X that does not occur in
the formula F. This is possible because P is infinite. Let G denote the formula
(F A X). We obviously have F-* ((F A X) = F), hence cl(G) < cI(F). The
assignment of truth values A defined by

forall Y € P,

5(Y) ifY #X

A(Y) =
(¥) [1 ifYy =X

satisfies F (since X does not occur in F) and satisfies X, so it satisfies G. It follows
that cl(G) # 0. On the other hand, the assignment of truth values p defined by

forall Y € P,

Mwﬁzrw)gY¢x
0 ifYy =X
satisfies F' (for the same reason that A does) but does not satisfy G, so it does
not satisfy the formula (F = G). So we do not have cl(F) < cl(G), which
shows that cl(G) is a strict lower bound for cl(F); so it is a strict, non-zero lower
bound. u

Definition 2.38 A Boolean algebra isatomic if and only if every non-zero element
has at least one atom below it.

This is the situation, for example, with the Boolean algebra of all subsets of a
given set (every non-empty set contains at least one singleton).

Theorem 2.39 Every finite Boolean algebra is atomic.

Proof Let (A, <,v, ~,0, 1) be a finite Boolean algebra and let x be a non-zero
element of A. Denote by m(x) the set of non-zero strict lower bounds of x in A.
[f m(x)isempty, then x isan atom. If m(x) is not empty, then because itis finite,
at least one of its elements is minimal in the ordering <, i.e. no element of m(x)
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is strictly below it. It is easy to see that such a minimal elementis an atomof A
that is below x. N

Theorem 2.40 Let (A, +, x,0,1) be a Boolean algebra (finite or not). Then for
every non-zero element a of A and for every integer k > 2, the following properties
are equivalent:

(1) ais anatom;
(2) for every element x in A, we havea < x ora <1+ x;

(3) forall elements x1,x2,...,xkin A, ifa <xy— xp~— ---~ xy, thena < x
ora <xyor...a < x.

Proof First observe that by virtue of Lemma 2.31 andthe definition of the order
<, (2) is equivalent to

(2’) forevery element x in A, we have ax = a orax = 0.

Now letus prove the theorem.
Let a be a non-zero element of A and k a natural number greater than or
equal to 2.

e (1) = (2'): forevery element x in A we have ax < a, hence, since a is an
atom,ax = aorax = 0.

e (2) = (3): assume (2) and choose elements x|, x2,...,xx In A such that
6 < x) ~ Xy ---—xrlIfnoneofa < xy,a < xz,...,a < xiistrue, then we
conclude, from (2),thata < 1+4+x;,anda < 14x2,and... anda < 1+4+x;soa
wouldbe a commonlower bound for1+x1,1+x2, ..., 14+ x4, andhence would
be less than or equal to their greatest lower bound 1 4 (x] « x2 ~ --- ~ xx)
(de Morgan). The element a would then be simultaneously less than or equal to
both x| « x2 « --- « x¢ and its complement, which is impossible since a is
non-zero. So (3) is proved.

e (3) = (1): assume (3) and let b be a lower bound for a. It is obvious that
¢ <b- (1+b)=1Bytakingx; =bandxz =x3=---=x, =14+bin
(3), we deducethata < bora <1+ b. In the first case, we obtain b = a and
in the second case, b = ab = 0 (Lemma 2.31). We have thereby proved that a
1s an atom. [

2.4 Homomorphisms, isomorphisms, subalgebras
2.4.1 Homomorphisms and isomorphisms

We will generally refer to a homomorphism of rings with a unit (i.e. a map that
preserves both addition and multiplication as well as the identity elements of these
operations) as a homomorphism of Boolean algebras. We will give definitions,
examples, counterexamples, and characterizations in terms of ordered sets.
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Definition 2.41 Let A = (A, +, x,0,1) and A’ = (A’, +, x, 0, 1) be Boolean
algebras and h be a map from A into A’. We say that h is a homomorphism of
Boolean algebras from A into A’ if and only if for all elements x and y in A,
we have

h(x +y) =h(x) +h(y);
h(x xy)=h(x) x h(y);
h(l) =1.

Remark 2.42 The condition h(0) = 0 is not part of the definition since it can be
deduced immediately from the first condition (just set x =y = 0).

Thesituation is different for the multiplicative identity element: the third relation
is not a consequence of the second, as the following example shows; take A =
£ (N) and A" = g (Z) with their natural Boolean algebra structures and take A to
be the identity map from A into A (which we can consider as a map from A into
A’ since A C A’); it is very easy to verify that the first two relations above are
satisfied, but the third is not since the identity element for multiplication in A is N
while in A’ it is Z.

The reader will have observed that we committed an abuse of language by
giving the same names to the operations (as well as to their identity elements) in

A and A’

Remark 2.43 The notion of homomorphism defined here is nothing more than

the general notion of homomorphism for rings with unit, specialized to the case of
Boolean rings. (We should note in passing that there can exist a homomorphism of
rings with unit between a Boolean algebra and a ring with unit that is not a Boolean

algebras.) Properties that hold for arbitrary homomorphisms of rings with unit
continue to hold, obviously, for Boolean algebras: for example, the composition of
two homomorphisms of Booleanalgebras isa homomorphism of Boolean algebras.

The same line of thought shows that we could actually dispense with Corollary 2.49
below.

Lemma244 Let A= (A, <,0,1)and A = (A’, <,0,1) be two Boolean alge-
bras and h be a homomorphism of Boolean algebras from A into A’. Then we have

(continuing with the earlier notations and with the abuse of language mentioned
in Remark 2.42):
For all elements x and y of A,

h(x ~y) =h(x) ~h(y);
h(x") = (h(x))";

h(x ~ y) =h(x) ~ h(y);

ifx <y, thenh(x)<h(y).
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Proof Because the operations x and — are identical, the first relation is already
a consequence of the definition of homomorphism. The second can be rewritten
as h(1 — x) =1+ h(x), which is an immediate consequence of A(1) =1 and the
additivity of h. The third relation follows from the first two by de Morgan’s laws.
Finally, the last relation can be rewritten: if xy = y, then h(x)h(y) = h(x); and
the latter is true since h(xy) = h(x)h(y). [

Theorem2.45 Let A = (A, <,0,1) and A = (A" <,0,1) be two Boolean
algebras and h be a map from A into A'. For h to be a homomorphism of Boolean
algebras, it is necessary and sufficient that for all elements x and y in A, we have

h(x ~y) =h(x) ~ h(y),
h(x%) = (h(x)".

Proof Accordingtothe lemma, the condition is necessary. Suppose it is satisfied
and let x and y be elements of A. We then have:

h(xy) =h(x ~y) = h(x) ~ h(y) = h(x)h(y),

hoc+ ) = h((x ~30) = (6 ~ ) = h(((x ~ ) ~ (5~ )))
= (h((x ~ ) ~ (T~ 3)) = (B ((x ~ ¥)) ~h((° ~3)))
= (0 ~ ¥9)) ~ (AGE ~ 9))) = hlx ~ 38) ~ h(x" ~ y)
= (h(x) ~ h (%)) = (h(x") ~ h(»)
= (h(x) ~ (A()F) ~ (RN ~ h(y))
= h(x) + h(y).

It follows that £(0) = 0 (see Remark 2.42) and hence that

h(1) = h(0%) = (h(0))° =0° = 1.
This shows that 4 is a homomorphism. |

Remark 2.46 It is clear that in the statement of the preceding theorem, we could
replace the operation ~ by the operation - everywhere.

Definition 2.47 An isomorphism of Boolean algebras is a homomorphism of
Boolean algebras that is bijective.

Theorem 248 Let A = (A,<,0,1) and A’ = (A’ <,0,1) be two Boolean
algebras and h be a surjective map from A onto A’. For h to be an isomorphism
of Boolean algebras, it is necessary and sufficient that

{(x) forallelements x andy of A, x <y ifandonlyifh(x) < h(y).

Proof First let us suppose that £ is an isomorphism and let x and y be elements
of A. If x < y, then by Lemma 2.44, h(x) < h(y). If h(x) < h(y), then by
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the definition of < and because % is a homomorphism, A(x) = h(x)h(y) = h(xy).
But since A is injective, this requires x = xy, which is to say, x < y. So (%) is
satisfied.

To prove the inverse, suppose (*) holds and that « and v are two elements of
A such that h(u) = h(v). We have h(u) < h(v) and h(v) < h(u), thus, by (*),
u < v,and v < u, and so u = v. Thus, A is injective. Next, let x and y be arbitrary
elementsof A.Sett = h(x) ~ h(y). Since h is abijection, there is aunique element
Z in A such thatt = h(z). We have h(z) < h(x) and h(z) < h(y), hence, using
(*),z < x,andz < y,andsoz < x ~ y. Butsincex ~y < xandx ~y <y,
we have, always using (*), that h(x ~ y) < h(x) and h(x ~ y) < h(y), which
implies

h(x ~y) < h(x) ~ h(y) = h(2).

Using (*) once more,weobtainx ~ y < z,andputtingall this together,z = x ~ y,
which proves

h(x ~y) = h(x) ~ h(y).
When we replace ~ by — and < by > in the previous argument, we obtain
h(x ~ y) =h(x) -« h(y).

Let u be an arbitrary element of A’ and let ¢ be its unique preimage in A under
h.In A, wehave 0 <t andt < 1. It follows, using (x), that, in A’, h(0) < u, and
u < h(1). This shows that A(0) and A(1) are, respectively, the least and greatest
elements of A’, or in other words, that A(0) = 0 and A(1) = 1.

So for every element x in A, we have

h(x®) ~h(x) = h(x®* ~x) =h(0) =0 and
h(x%) — h(x) = h(x® < x) =h(1) = 1.

Therefore h(x®) is the complement o f 4 (x), orin other words,
(hO)E = h(x°).

We conclude, using Theorem 2.45, that A is a homomorphism of Boolean
algebras. L

Notice that the relation A(x — y) = h(x) -~ h(y) is not required to apply
Theorem 2.45; rather, it was useful in proving that A commutes with the operation
of taking complements.

Corollary 2.49 The composition of two isomorphisms of Boolean algebras, as
well as the inverse of an isomor phism of Boolean algebras, are isomorphisms of
Boolean algebras.
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Proof LetA = (A,+, x,0,1), B = (B, +, x,0,1),andC = (C, +, x,0,1)
be Boolean algebras, let ¢ bean isomorphism of Boolean algebras from .A onto 3
and v an isomorphism of Boolean algebras from BB onto C. The mappings ¢ ! and
¥ o ¢ are obviously surjective. For all elements « and v of B, ¢~ ' (u) < o L(v)
is equivalent to ¢ (¢~ 1(u)) < ¢(¢'(v)), i.e. to u < v. On the other hand, for
all elements x and y of A, we have x < y if and only if ¢(x) < ¢(y), and
¢ (x) < ¢(y) ifand only if ¥ (@(x)) < Ww(¢(y)). With the preceding theorem, we
conclude that ¢! and ¥ o ¢ are isomorphisms of Boolean algebras, from 3 onto
A and from A onto C respectively. ]

Theorem 2.50 Every finite Boolean algebra is isomorphic to the Boolean algebra
of subsets of some set.

Proof Let A == (A, +, x,0,1) be a finite Boolean algebra and let E be the set
of its atoms. Note that E is not empty since there is at least one atom that is less
than or equal to the non-zero element 1 (Theorem 2.39). We will show that A is
isomorphic to the algebra of subsets of E.

To do this, consider the map A from A into g (E) which, with each element x
of A, associates the set of atoms that are below x:

foreachx € A, h(x) ={a € E :a < x}.

e h is surjective: indeed, we first of all have h(0) = () (thereisnoatom below 0);
as well, let X = {ay, a2, -..,ar} be a non-empty subset of E and set My =
ajy ~ az ~ ---w a,weclaim h(M x) = X: the inclusion X C h(M x) follows
immediately form the definition of 4 (every element of X is an atom which
is below M x); the reverse inclusion is shown using Theorem 2.40: if a is an
element of h(My), i.e. an atom which is below My = a; v a2 « -+ ~ a,
then we have a < q; for at least one index i (this is clear if k = | and this is
clause (3) of the theorem if k > 2), but since a and q; are atoms, this entails
a=aj,andsoa € X.

e For all elements x and y of A, if x < y, then h(x) < h(y): indeed, if x < y,
every atom that is below x is an atom that is below y.

e Forallelements x and y of A, if h(x) C h(y), then x < y: indeed, if x is not
less that or equal to y, then x(1 + y) # 0 (Lemma 2.31). As A is finite, it is
atomic (Theorem 2.39) so we can find an atom a € E such thata < x(1 + y).
The atom a is thus below both x and 1 + y; it cannot be below y as well since it
is non-zero. So we have a € h(x) and a ¢ h(y), which shows that 2(x) is not
included in A(y).

We may now conclude, thanks to Theorem 2.48, that A4 is an isomorphism of
Boolean algebras from .A onto g (E). l

Corollary 2.51 The cardinality of any finite Boolean algebra is a power of 2.

Proof If the finite set E has cardinality n, then the set of its subsets, g (F), has
cardinality 2”. ]
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2.4.2 Boolean subalgebras

Definition 2.52 Let A = (A, +, %, 0, 1) be a Boolean algebra. A subset B of A
constitutes a Boolean subalgebra of A if and only if B contains the elements 0
and 1 and is closed under the operations + and x (in other words, 0 € B, 1 € B,
andifx € Bandy € B, then x + y € B and xy € B).

A Boolean subalgebra of A is thus a subring of A that contains the element 1.
This distinction is essential: in a ring with unit, a subring can itself be a ring with
unit without containing the unit element of the full ring: in this case, the role of
the identity element for multiplication is played by some other element. Let us
reexamine the ring (9 (Z), A, O, &, Z): e (N) is a subset that is closed under the
operations A and N and it contains @J; it is therefore a subring of g (Z). Obviously,
Z ¢ g (N). Nonetheless, N is the identity element for the ring g (N). Thus the
Boolean ring g (N) is a ring with unit and is a subring of g (Z), but is not a
substructure of g (Z) as a ring with unit: it is therefore not a Boolean subalgebra
of o (Z).

Theorem 2.53 Let A = (A, +, x,0,1) be a Boolean algebra and let B be a
subset of A. For B to be a Boolean subalgebra of A, it is necessary and sufficient
thatthere exists a Boolean algebra A’ = (A’, +', x’,0’, 1) anda homomorphism
of Boolean algebras, h, from A’ into A such that the image of the map h is the
subset B.

Proof

e necessary:take A = B, 4+ = +, x' = x,0=0, 1" = 1, and h = the identity
map from B into A. It is immediate to verify that 4 is a homomorphism of
Boolean algebras whose image is B.

e sufficient: choose A’ and A as indicated. We have 4(0’) = 0, hence 0 € B, and
h(1’) = 1, s0 1 € B. Moreover, if x and y are elements of B, then we can
choose elements x” and y’ in A’ such that x = h(x’) and y = h(y’). We then
have

x+y=h(x"Y+h(y)=h(&"+y), hencex+yelmh)=B;, and
xy =hx"Yh(y") = h(x'y"), hence xy € Im(h) = B.

So B is a Boolean subalgebra of A. W

Theorem 2.54 Ina Boolean algebra A = (A, +, x, 0, 1), for a subset B to be a
Boolean subalgebra, it is necessary and sufficient that B contain 0 and be closed
under the operations x KL and (x, y) r> x ~ .

Proof
e necessary: since x* = 1+ x and x ~ y = xy, and since B must contain0 and 1
and be closed under + and X, the result is immediate.

C
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e sufficient: foreveryx andy in A wehavex « y = (x ~ yc)c. So the closure of
B under complementation and ~ guarantees its closure under . Moreover, 1° =
0 must belong to B. Since the operations + and x can be defined exclusively

in terms of ~, —, and complementation, we conclude that B is closed under +
and x and that (B, +, x, 0, 1) is a Boolean subalgebra of A. |

Example 2.55 Let E be an infinite set, let A = g (FE), the set of all its subsets,
and let B be the subset of A consisting of those subsets of E that are finite or
whose complement is finite. We will show, using the previous theorem, that B is
a Boolean subalgebra of the Boolean algebra of subsets of E.

Proof A subset of E whose complement is finite will be called cofinite. The
empty set, which is a finite subset of F, belongs to B. Itisclear that B isclosed under
complementation: the complement (in this instance, the set-theoretic complement)
of a finite subset of E is a cofinite subset and the complement of a cofinite set is
finite. Also, B is closed under ~ (inthisinstance, set-theoreticintersection): indeed,
the intersection of a finite subset of E with any subset of E is a finite subset of E;
as for the intersection of two cofinite subsets of E, this too is a cofinite subset of
E: 1o see this, suppose that U C E and V C FE are cofinite; this means that £ — U
and E — V are finite and hence, so is their union (£ — U) U (E — V) which is
simply (de Morgan) E — (U N V); it follows that U N V is cofinite. ]

Example 2.56 Here is an example that will be of use in Section 2.6. Let X be a
topological space and let B(X) be the subset of g (X) consisting of subsets of X
thai are both open and closed in the topology on X (recall that we speak of clopen
sets in this context). This set B(X) is a Boolean subalgebra of the Boolean algebra
of subsets of X.

Proof Firstofall, the empty set (0) and the whole space X (1) itself are naturally
clopen sets. Next, the complement of a clopen set is clopen and the intersection
of two clopen sets is clopen. So Theorem 2.54 allows us, here as well, to arrive at
the expected conclusion. )

1t can happen that the Boolean algebra B(X') under consideration here reduces to
{0, 1} (this is the case, forexample, when X is the space R with its usual topology:
) and R are the only subsets that are both open and closed); B(X) can also coincide
with g (X) (when thetopologyon X is the discrete topology (the topology in which
all subsets are open) and, obviously, only is this case).

Let us now give two examples of homomorphisms of Boolean algebras.

Example 2.57 Consider the Boolean algebra F/ ~ of equivalence classes of
logically equivalent formulas of the propositional calculus built from a set of
variables P (see Examples 2.26). Choose an assignment § of truth values on P
and as usual let 8 denote the extension of § to the set F of all formulas. We can
then define a map hs from F/ ~ into {0, 1} by setting, forevery formula F,

hs(Cl(F)) = 8(F).
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This definition is legitimate since 8 (F) assumes the same value on all formulas
in a given equivalence class.

This map, hs, is a homomorphism of Boolean algebras from F /~ into {0, 1}.
By virtue of Theorem 2.45 and the definition of the operations for the Boolean
algebra F/~, it suffices to establish that for all formulas F and G in F, we have

hs(Cl(F N G)) = hs(cl(F))hs(cl(G)) and
hs(cl(—F)) =1 — hs(Cl(F)).

Now these relations are equivalent to

S(FAG) =8(F)8(G) and
8(—F)=1-68(F),

which are true by definition of §.
We will prove (Exercise 13) that all Boolean algebra homomorphisms from
F/ ~ into {0, 1} are obtained in this manner.

Example 2.58 Let A = (A, +, x,0, 1) be a Boolean algebra and let a be an
atom in this algebra (we are assuming that one exists). Let us define a map h, from

A into {0, 1} by
1 fxeAanda <«x

he(x) =
«t) {0 ifxeAanda <1+ x

(these two cases are mutually exclusive since a is different from 0, and there are
no other cases since a is an atom: see Theorem 2.40).

We claim that A, is a homomorphism of Boolean algebras from .4 into {0, 1}.

Proof To prove this, let us use Theorem 2.45: let x and y be two elements of
A. We have hy(x ~ y) = 1ifandonly ifa < x ~ y, but this is equivalent, by
the definition of greatest lower bound,toa < x anda < y, henceto ha(x) =1
and he(y) = 1, which is necessary and sufficient to have hg(x) —~ ha(y) = L It
follows that

ha(x ~y) = ha(x) ~ ha(y).

Also, h,(x%) = 1 if and only if a < xt ie.a <1+ x, which is equivalent to
hq(x) = 0. Since h, only assumes the values 0 or 1, this means that

ha(x°) = (ha(x))". n

2.5 Ideals and filters
2.5.1 Properties of ideals

As mentioned in the reminders, ‘ideal’ means “proper ideal’.



[DEALS AND FILTERS 89

Theorem 2.59 Let A = (A, <,0,1) be a Boolean algebra and I a subset of A.
For I tobeanideal, itis necessary and sufficient that the following three conditions
be satisfied:

(1) 0elandl ¢ I;
(11) forall elements x and y of I, x — y € I;
(iii) forall x € I andforally € A, if y < x, then y € I.

Proof Suppose first that I is an ideal. Then in particular, it is a subgroup of the
group (A, +,0),s00 € I.If 1 werein I, then / would be the entire ring and
we have excluded this case; so (1) is verified. If x and y are in /, then so is their
product xy and, consequently, the sum x + y + xy = x — y, which proves (i1).
Finally, let us verify (iii): if x € I and y € A,thenxy € I andif y < x as well,
then xy = y and, consequently, y € I.

Conversely, suppose that (i), (ii), and (ii1) are satisfied. We must show that I is
anidealin A.Ifx e I and y € I,thenx — y € I by (ii), butsincex +y < x — y
(this is trivial to check) and since x + y = x -- y (we are in a Boolean algebra), we
conclude using (iii) thatx — y € 1. Since 0 € I, we have all we need for (/, +, 0)
to be a subgroup of (A, +, 0). Moreover, if x € I and y € A, then since xy < x,
we may conclude from (iii)that xy € I. Theset I is therefore anidealin A (1 #£ A
since 1 ¢ I). [

Corollary 2.60 If 1 is anideal in a Boolean algebra (A, +, x, 0, 1), there is no
element x in A that can satisfy both x € I and1+ x € I.

Proof Iftheideal 7 contains both x and1 + x, it wouldalsocontain the element
x -« (1 + x) = 1 (invoke property (ii) of the theorem). But this is not possible
since 1 ¢ I (property (1)). ]

Corollary 2.61 Let A= (A, +, x,0, 1) be a Boolean ring and let I be an ideal
in A. For any integer k > 1 and any elements x|, x2, ..., xy in I, the least upper
bound x| «— x2 — - -+~ xy belongs to I.

Proof Thisis a generalization of property (ii) of the theorem; its proof is imme-
diate by induction on the integer k (the case kK = 1 needs no argument). ]

Example 2.62

(1) If E is an infinite set, the set o s(E) of finite subsets of E is an ideal in the
Boolean algebra g (FE). It is easy to verify conditions (1), (ii), and (iii) of the
theorem: ) is a finite subset of £ while E itself is not one, the union of two
finite subsets of E is a finite subset of E, and any subset of a finite subset of
E is a finite subset of E.

(2) Let A = (A, +, %, 0,1) be a Boolean algebra and let a be an element of A
that is not equal to 1. The set I, = {x € A : x < a} is an ideal in .A. Here too,
the verification of properties (i), (ii), and (iii) is immediate: we have 0 < a
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and, since a is distinct from 1, wedonothavel < ga;if x <aand y < a, then
x ~ y<a;hnally,ifx <aandy < x,theny < a. I, is called the principal
ideal generated by a. This agrees with the usual definition of a principal ideal
in an arbitrary commutative ring since, in a Boolean ring, the set of elements
below a given element is also the set of its multiples.

(3) In any Boolean algebra, {0} is obviously an ideal.

Lemma 2.63 For any Boolean ring A = (A, +, x, 0, 1) and for any ideal I in
A, the quotient ring A/I is a Boolean ring.

Proof Foreach element x in A, letx denote the equivalence class of x modulo 7.
We already know that A /I is a ring with unit. So it is sufficient to show that every
element is an idempotent for multiplication. But this is an immediate consequence
of the definition of multiplicationin.4/I and of the fact that .A is a Boolean algebra:
ifx € A, x> =x2 =x.

Recall that in an arbitrary commutative ring with unit, the ideals are precisely
the kernels of homomorphisms of rings with unit defined on the ring. (See
Remark 2.43.) The theorem that follows merely takes up this result for Boolean
rings, with this added precision: it shows that the ideals in a Boolean ring are

precisely the kernels of homomorphisms of Boolean algebras defined on the ring.
a

Theorem 2.64 Let A = (A, +, x,0,1) be a Boolean ring and let I be a subset
of A. The following properties are equivalent:
(1) I isanidealin A;

(2) there exists a homomorphism of Boolean algebras, h, defined on A
whose kernel is I (in other words),

I=h'[{0)]={x € A:h(x) =0);

(3) there exists a homomorphism of commutative rings with unit defined on A
whose kernel is 1.

Proof The equivalence of (1) and (3) is the result in the preceding reminder;
(2) = (3) is obvious. We will nonetheless prove (3) = (1) and then (1) = (2),
which is, as observed above, more precise than (1) = (3).

e (3)= (1): suppose there exists a homomorphism A from A into a ring with unit
B = (B,+, x.,0,1) suchthat I = h~'[{0})] = {x € A : h(x) = 0}. Let us
verify that conditions (i), (i1), and (iii) from Theorem 2.59 are satisfied.

Wehave h(0) = 0and h(1) = 1,hence0 € Tand1 € I.If x e [ and y € I,
then A(x) =0and A(y) = 0, so

hix - y)=h(x+y+xy)=hx)+h(y)+hx)h(y)=0
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andsox « y € I.Finally,ifx e I,y € A,andy < x,thenh(x) =0andxy =y,
hence h(y) = h(x)h(y) =0,ie. y € I.

Thus, I isanideal of A.

(Of course, it would have made no sense to use an order relation or the « and ~
operations in B).

e (1)= (2): supposethat I is an ideal in A and consider the map A from A into
A/ I which, with each element x, associates its equivalence class, x, modulo
7 (h is what is generally known as the canonical surjection of A onto A/I). h
is a homomorphism of Boolean algebras (the canonical homomorphism of A
onto A /I): to see this, we invoke Theorem 2.45; if x € A and y € A, then

h(x ~y)=hkxy)=xy=xXxxy=h(x) x h(y) = h(x) ~h(y) and
(xS =h(1+x) =T+ x =1+%=1+h(x) = (h(x))".

Also, it is clear that I = 0 = {x € A : h(x) = 0}: I is the kernel of A. o

2.5.2 Maximal ideals

Here is a collection of ways to characterize maximal ideals in a Boolean algebra:

Theorem 2.65 For every Booleanring A = (A, +, %, 0, 1), for everyideal I in
A. and for every integer k > 2, the following properties are equivalent:

(1) I is a maximal ideal;

(2) A/l is isomorphic io the Boolean algebra {0, 1};

(3) 1 isthe kernel of a homomorphism of A into {0, 1};

(4) for everyelement x in A, x € l or1 +x € I;

(5) for all elements x and y of A, if xy € I, thenx € [ ory € I;

(6) for all elements x1,x2,...,x¢inA,ifx;x2---xp €I, thenx; € I orxy eI
or---orxg €l.
Proof

e (1)=(2): In Section 1, we recalled that if the ideal / is maximal, then the
quotient ring A/ is a field. But we also observed (Remark 2.28) that the only
Boolean ring that is a field is {0, 1}. So the result follows using Lemma 2.63.

e (2)= (3): It suffices to note that / is always the kernel of the canonical homo-
morphism 4 from A into A/I. If there is an isomorphism ¢ from .4/ onto

{0, 1}, then I will obviously be the kernel of the homomorphism ¢ o h from A
into {0, 1}.

e (3)= (4): Consider a homomorphism A from A into {0, 1} whose kernel is /
and let x be an arbitrary element of A. We have h(x) = 0 or A(x) = 1. In the
first case, x € I;in the second case we have 1 + h(x) = 0,so h(1+ x) =0
and1+x € 1.
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e (4)=(5):Letx and y be elements of A suchthatx ¢ I'andy ¢ I.If (4) holds,
thenl+x e ITandl1+y € I,so(1+x) ~ (1+ y) € I (property (ii) of
Theorem 2.59). But

A4+x)~A+=14+(x~y)=1+xy,

so, by Corollary 2.60 xy ¢ I, and so (5)is proved.

e (5)=(1): Suppose that I is not maximal. Let J be an ideal of A that strictly
includes 7 and a be an element of J that does not belong to /. Using Coro-
llary 2.60,1 +a ¢ J.andso1+a ¢ I since I C J. The ideal I contains
neither a nor 1 + a, but it does obviously contain the product a(1 + a) = 0. We
conclude that (5) 1s not satisfied.

e (5)=(6): We assume that (5) is satisfied and we argue by induction on the
integer k. For k = 2, (6) coincides with (5). Assuming (6) is verified for k, we
will prove that it is satisfiedfor k + 1. Let x1, x2, . . ., x¢, x¢+) be elements of
A such that x1x3 - - - xgxp+; € I. By (5) we must have either x| x; ---xy € I or
xk+-1 € I. In the first instance, by the induction hypothesis, we have x; € I or
x2 € Ior... orx, € I.Wethen conclude that we must have x; € I for at least
one index i such that 1 <i < k + |; this proves (6) for k + 1.

e (6)=(5): Let x and y be two elements of A such that xy € I. Set x; = x and

X2 =x3 =...=x, = Yy. Sowehave x1x2---x = xy € I. So if (6) is true,
we must have x; € I for at least one index i between 1 and k; so either x € I
or y € 1 and (5) is verified. |

Remark 2.66 In an arbitrary commutative ring, an ideal with property (S) from
the preceding theorem is called a prime ideal. What we have just proved is that in
a Boolean ring, the prime ideals are precisely the same as the maximal ideals. But
there are rings forwhichthis fails to be true. What is always trueisthatanideal is
primeifand only if the associated quotient ring is an integral domain (this is easy
to prove); we conclude from this as well that a maximal ideal must necessarily
be prime (it suffices to consider the corresponding quotient ring). Thus it is the
converse of this that can fail (for example, in the ring R[ X, Y] of polynomials in two
variables with real coefficients: the ideal generatedby the polynomial X, i.e. the set
{XP : PeR[X,Y])isprimebut is not maximal since it is strictly includedin the
ideal generated by the polynomials X andY ,i.e. theset {(XP+Y Q : P € R[X, Y],
0 € R[X, Y)}).

Remark 2.67 In particular, we should take note of the equivalence between prop-
erties (1) and (3). Observe that if two homomorphisms h and g from a Boolean
algebra A = (A, +, x,0, 1) into {0, 1} have the same kernel, I, then they are
equal: this is because for any element x in A, either x ¢ I and g(x) = h(x) =0
orelse x ¢ [ and g(x) = h(x) = 1. We may conclude from this that there is a
bijection between the set of maximal ideals in a Boolean algebra and the set of
homomorphisms of Boolean algebras from this algebra into {0, 1}.
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2.5.3 Filters

We will now introduce the notion that is dual to that of an ideal on a Boolean
algebra: we will define filters.

Definition 2.68 A filter in a Boolean algebra A = (A, +, x,0,1) is a subset F
of A such that the set

{xeA:xGeF}

isanideal in A.

Let F be a filter in a Boolean algebra A = (A, +, x,0,1). Let I be the
ideal {x € A : x* € F}. I is realized as the inverse image of F under the oper-
ation of complementation: x —— xC. But, as this operation is an involution (see¢
part (9) of Theorem 2.29), I is also the direct image of F under this operation:
I ={x € A:3y(y € Fandx = y%)}.In other words, / is the set of complements
of elements of F and F is the set of complements of elements of /. The ideal I is
calledthe dual ideal of the filter F'. It is easy to see that, given an arbitrary ideal
Jin A, theset G = {x € A : x* € J} is a filter whose dual ideal is precisely J.
To everyone’s surprise, we will call G the dual filter of the ideal J. There is thus
a bijection between the set of ideals and the set of filters in a Boolean algebra. For
filters, we have the dual of Theorem 2.59.

Theorem 2.69 Let A= (A, <,0,1) be a Boolean algebra and F a subset of A.
For F tobea filter; itis necessary and sufficient that the following three conditions
be satisfied:

(f) 0 ¢ Fandl € F;
(ff) forallelements xandy of I, x ~y € F;
(fff) forallx € F andforall y € A, if y > x, theny € F.

Proof Set I ={x e A:x e F}. If F is a filter, then 7 is its dual ideal and
conditions (1), (i1), and (ii1) from Theorem 2.59 are satisfied. So we have 0 € I,
hence O° =1 € F,and 1 ¢ I, hence 1° = 0 ¢ F, which proves (f). If x € F and
y € F,thenxXeJand yt e /,s0x® « yt e 1 (by (ii)), and, as xt o yb =
(x ~ y)°, we conclude that x ~ y € F and that (ff) is satisfied. Finally,if x € F,
y € A,and y > x, then x* € I and y® < x€, so, (by (iii)) y* € I'and y € F,hence
(fff).

Conversely, in a strictly analogous fashion, (i) follows from (f), (ii) from (ff) and

(1t1) from (fff). H
Corollary 2.70 Let A = (A, <,0, 1) be a Boolean algebra and F a subset of A.
For any integer k > | and any elements x\,x7,...,xy in F, the greatest lower

bound x| ~ x3 ~ --- ~ x;, belongs to F.

Proof Analogue of Corollary 2.61. H
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2.5.4 Ultrafilters

Definition 2.71 /n a Boolean algebra, an wltrafilter is a maximal filter, ie. a
filter which is not strictly included in any other filter:

It is clear that, in view of the duality explained above, ultrafilters correspond to
maximal ideals. In other words, the dual filter of a maximal ideal is an ultrafilter
and the dual ideal of an ultrafilter is a maximal ideal.

There is an analogue for filters of Theorem 2.65:

Theorem 2.72 Forevery Boolean ring A = (A, +, x, 0, 1), for every ideal F in
A, and for every integer k > 2, the following properties are equivalent:

(1) F is an ultrafilter;

(3') there is a homomorphism h from A into {0, 1) such that
F={xeA:h(x)=1};

(4) forevery element x in A, x € Forl+x € F;
(5) forall elements x and y of A, ifx —y € F,thenx € Fory € F;

(6") forallelements x|, x2,...,xxinA,ifx; <~ xp~r---<wxx € F, thenx; € F
orxy) € For... orx,e F.

Proof Given the algebra A, the filter F' and the integer k, let / denote the ideal
dual to F. It is elementary to verify that properties (1°), (3"), (4), (5’), and (6")
for the filter F are respectively equivalent to properties (1), (3), (4), (5), and (6)
of Theorem 2.65 for the ideal / (we use the correspondence between I and F, de
Morgan’s laws, etc.) |

Remark 2.73 The ‘or’ in property (4) of Theorem 2.65, as well as the one in
property (4) above, is in fact an ‘exclusive or’ (see Corollary 2.60). This means
that if F is an ultrafilter in a Boolean algebra (A, +, x,0,1) and if I is the
maximal ideal dual to F, then I and F constitute a partition of A. Thus each of
the sets I and F is simultaneously:

e the complement of the other (viewed as subsets of A),

e the set of complements of the elements of the other (in the sense of comple-
mentation in the Boolean algebra under consideration).

The second of these properties holds whenever we have an ideal and a filter that
are dual to one another, but the first holds only when the ideal and filter in question
are maximal.

Remark 2.74 Returning to Remark 2.67, we can now add to it and insist on the
factthat fora Booleanalgebra, A, there arecanonical one-to-one correspondences
among (i) the maximal ideals in A, (ii) the ultrafiltersin A and (iii) homomorphisms
of Boolean algebras from A into {0, 1}.
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Examples: To have examples of filters, it obviously suffices to refer to the previ-
ously described examples of ideals (in Subsection 2.5.1) and to transform them by
duality. The reader can, without any difficulty, provide the necessary verifications:

(1) If E is aninfinite set, the setof all cofinite subsets of E (see Example 2.55)is a
filter in the Boolean algebra (o (E), C, ¢, E). This filter is called the Frechet.
filter on E. It is not an ultrafilter since there are subsets of £ which are infinite
and whose complements are also infinite, so condition (4’) of Theorem 2.72.
is not satisfied.

(2) Ifaisanon-zeroelementin a Boolean algebra (A, <, 0, 1),theset F, = {x €
A : x > aj} is a filter called the principal filter generated by a. It is the dual
filter of the ideal generated by 1 + a.

(3) The set {1} is the dual filter of the ideal {0}.

Theorem 2.75 Let (A, <,0,1) be a Boolean algebra and let a be a non-zero
element of A. For the principal filter generated by a to be an ultrafilter; it is
necessary and sufficient that a be an atom.

Proof By virtue of Theorem 2.40 and the definition of the filter F,, a is an atom
if and only if for every element x of A, x € F, or1 + x € F_; but for this to

happen, it is necessary and sufficient that F, be an ultrafilter ((4’) = (1”) from
Theorem 2.72). u

When the principal filter F, generated by a non-zero element a of A i1s an
ultrafilter (thus, when a is an atom), we say that this is a trivial ultrafilter. The
homomorphism Ak, with values in {0, 1} that is associated with it is also called &
trivial homomorphism. As it is defined by : h,(x) = 1ifx € Fgand h,(x) = 0if
x ¢ F,,and as this is obviously equivalent to: h,(x) = 1ifa < x and hy(x) = €
if a < 1+ x, we see that what is involved is precisely the homomorphism studied
in Example 2.58.

Lemma 2.76 Let A be a Boolean algebra and let U be an ultrafilter on A. For
U to be trivial, it is necessary and sufficient that it contain at least one atom.

Proof If is trivial, it is generated by an atom, a, and sincea < a,a € U.
Conversely, ifif contains an atom, b, it also contains all elements greater than or
equal to b (condition (fff) of Theorem 2.69). It follows that the principal filter Fg
generated by b is included in i/. But since b is an atom, F}, is maximal and cannot
be strictly included in the filter ¢/f. Hence Y = Fj and U is a trivial ultrafilter. ®

Theorem 2.77 Let E be an infinite set and let U be an ultrafilter in the Boolearn

algebra g (E). ForU to be non-trivial, it is necessary and sufficient that it includes
the Frechet filter on E.

Proof The atoms of g (E) are the singletons (subsets consisting of a single el-
ement); so they are finite sets. If ¢/ includes the Frechet filter, every cofinite sub-
set of E belongs to U, hence no finite subset of E can belong to U/ (U4 cannotl
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simultaneously contain a subset of E and its complement: see Remark 2.73).
In particular, no atom can belong to /. It follows, by the preceding lemma, that ¢/
i1 non-trivial.

[f U does not include the Frechet filter, we can choose a cofinite subset X of E
that does not belong to ¢/, and hence whose complement E — X does belong to/.
As E is the identity element for the Boolean algebra o (E), E € U;hence X # E.
The complement of X in E is thus a non-empty finite subset of E: for example,
E—X=\{a,ay,...,a,)(n>1).Sowehave {a1, a7, ...,a,} €U, whichis to
also say:

(a1} U{a) U - Ula,) = a1} ~ (g} ~ -+ < {a,) € U.

Ifn =1, {a;) € U. If n > 2, then by property (6’) of Theorem 2.72, we have
{a;} € U for at least one index i between | and n. We see that in every case,
U contains a singleton, i.e. an atom. The preceding lemma then shows that / is
trivial. L]

Remark: In Exercise 16, we will prove a property which includes this theorem
as a special case.

2.5.5 Filterbases

Definition 2.78 Ina Boolean algebra (A, <, 0, 1), a basis for a filter (filterbase)
is a subset of A that has the following property, known as the finite intersection
property: every non-empty finite subset of B has a non-zero greatest lower bound.

In other words, B C A is a filterbase if and only if: for any integer k > | and
any elements x1, x2, ..., xkof B,xy ~x2 ~--- ~x #0.

Lemma 2.79 Let (A, <,0,1) be a Boolean algebra and let X be a subset of A.
For the existence of a filter on A that includes X, itis necessary and sufficient that
X be a filterbase.

Proof If X isincluded in a filter F, and if x|, x2, ..., xx are elements of X, then
their greatest lower bound x; ~ x3 ~ - - - ~ xx belongs to F' (Corollary 2.70), and
as 0 ¢ F, this greatest lower bound is non-zero; thus X is a filterbase.

Now suppose that X is a filterbase.

o If X =0, {1} is a filter on A that includes X.

e [f X is notempty, we set

Fy={xeA:Bke N"Y3x; € X)3x2€ X)...3x, € X)

(x>x) ~x2—~---~xp)}.

So Fx consists of greatest lower bounds of non-empty finite subsets of X
together with all elements greater than or equal to one of these greatest lower
bounds. In particular, each element of X belongs to Fyx, hence Fy includes X.
[tis easy toprove that Fy is a filter. We will restrict ourselves to the following
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remarks:

(f) 0 ¢ Fx (otherwise the finite intersection property would not be true for X)
and1 € Fy (because X is non-empty: at least one element of X is less than
or equal to 1).

) Ifx>xy ~xp ~---~xpandy > y; ~ y2 ~ -+ ~ yi, then we have

Xr\ylef\xzr\---r\xk/\yl/\yzf\---/\yk_
fff) If x > x) ~xp ~---~xyandy > x,theny > x;] ~x2 ~ .-+ ~ x¢. So
we have found a filter that includes X. [ ]

In the particular case of Boolean algebras, we can state Krull’s theorem (see the
beginning of this chapter) in terms of filters. It is then known as the ultrafilter
theorem:

Theorem 2.80 In a Boolean algebra, every filter is included in at least one
ultrafilter.

Proof Given a filter F, the ideal dual to F is included in at least one maximal
ideal; its dual filter is then an ultrafilter that includes F.

Of course, for Boolean algebras, the formulation in terms of filters and the
formulation in terms of ideals are equivalent.

The ultrafilter theorem allows us to give a slightly different restatement of
Lemma 2.79: ]

Lemma 2.81 Let (A, <,0,1) be a Boolean algebra and let X be a subset of A.
For the existence of an ultrafilteron A that includes X , itis necessary and sufficient
that X be a filterbase.

Proof The properties ‘there exists an ultrafilter on A that includes X’ and ‘there
exists a filter on A that includes X’ are equivalent: the first clearly implies the
second; the reverse implication follows from the ultrafilter theorem. The conclusion
then follows from Lemma 2.79. ]

2.6 Stone’s theorem

The first example of a Boolean algebra that comes to mind is, without a doubt, that
ofthealgebraof subsets of a given set. [severy Boolean algebra equal to (we really
mean ‘isomorphic to’) the Boolean algebra of subsets of some set? We already have
sufficient knowledge to answer ‘no’ to this question: we have encountered Boolean
algebras without atoms (Example 2.37) and we know that the algebra of subsets
of a set always contain atoms: the singletons; and any isomorphism transforms
atoms into atoms (see Exercise 3); a Boolean algebra that does not contain atoms
cannot therefore be isomorphic to an algebra that does.

None the less, Stone’s theorem, to which this section is devoted, showsthat there
is always a link that connects a Boolean algebra to an algebra of subsets of a set.
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More precisely, every Boolean algebra is isomorphic to a subalgebra of a Boolean
algebra of subsets of a set.

2.6.1 The Stone space of a Boolean algebra
Consider a Boolean algebra A = (A, +, x,0,1).

Definition 2.82 The set of homomorphisms of a Boolean algebra A into {0, 1} is
denoted by S(A) and is called the Stone space of A.

We could just have well chosen the set of maximal ideals or the set of ultrafilters
on A (by virtue of Remark 2.74).

The set S(A) is a subset of {0, 1}4, the set of maps from A into {0, 1}, which
we have considered earlier as a topological space by taking the discrete topology
on {0, 1} and giving this space the product topology (see Definition 2.19). So we
can give S(A) the topology induced by that of {0, 1}*. The open subsets of S(A)
are then the intersections with S(A4) of the open subsets of {0, 1}.

Lemma 2.83 The topological space S(A) is zero-dimensional.

Proof We saw (Lemma 2.21) that {0, 1}? is zero-dimensional. So it suffices to
apply Lemma 2.17. |

We have exhibited, just before Lemma 2.21, a basis (£2;);¢, for the space {0, 1}
consisting of clopen sets. Each of the €2; is the set of all maps from A into {0, 1}
that take specified values at a specified finite number of points. If foreach i, we set
['i = Q; NS(A), as in Lemma 2.17, then the family (I";);¢; 1s a basis for the open
sets in S(.A) consisting of clopen sets. Each I'; is the set of homomorphisms of
Boolean algebras from A into {0, 1} which assume given values at a finite number
of given points.

From now on, it is exclusively this basis for the open sets that we will consider
for the space S(.4). When we speak of a basic open set for the Stone space of A,
we mean one of the clopen sets in the family (I';);¢;-

Lemma 2.84 For a subset A of S(A) tobe a basic open set, it is necessary and
sufficient that there exist an element a in A such that

A=t{heSCA): h(a) =1}.
Moreover; when this condition is realized, such an element is unique.

Proof

e sufficient. Suppose that A = {h € S(A) : h(a) = 1}; A is the set of homomor-
phisms from A into {0, 1} that assume the value 1 at the point a: so it is one of

the basic open sets in S(.A).
e necessary. Suppose A is a basic open subset of S(A).

x If A =0, then A = {h € S(A) : h(0) = 1}.
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* If A # ), then there is an integer n > 1, elements a),a2,...,an in A and
elements €1, €7, ..., &, in {0. 1} such that

A=1{heS(A): h(a)) =€) and h(az) = e and ... and h(a,) = €,}.

Forevery k € {1, 2, ..., n}, set
ifep = 1;
bk = “ Tk
1+ aj lfgk =0.
For every homomorphism A € S(.A) and for every k € {1, 2, ..., n}, we have
h(ar) ifep =1;
h(by) = :
1+ h(ay) ifex=0.

It follows that for h € S(A), h € A if and only if h(bt) = 1 for all k €
{1, 2,...,n}. But this latter condition is equivalent to

h(b1) ~ h(b2) ~--- ~ h(by) =1,
or again, since a homomorphism is involved, to
h(by ~by ~ -+ ~by)=1.
So we see thatby settinga = by ~ by ~ --- ~ by, we have
A =1{heS(A): h@)=1}.

Now let us prove uniqueness:if a and b are distinct elements of A, thena+b # 0;
so we may consider the principal filter generated by a + b and, in view of the
ultrafilter theorem, an ultrafilter that includes this filter. To such an ultrafilter, there
is an associated homomorphism ¢ from A into {0, 1} that satisfies ¢ (@ + b) =1,
or again, ¢ (a) + ¢ (b) = 1, which means that one and only one of the two elements
¢ (&) and ¢ (b) is equal to 1. This proves that

{h € SCA): h(a) =1} # (h € S(A) : h(b) =1}

since ¢ belongs to one of these two sets and not to the other. ]

Corollary 285 The set of basic closed subsets of S(A) coincides with the set of
its basic open subsets.

Proof Let I be a basic closed subset of S(A). Then A = S(A) — I' is a basic
open subset; hence (by the preceding lemma) there is an element a € A such

that
A=1{heSA):h(@)=1}
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Hence,

I'={h e SA): h@) #1)
— (h € S(A) : h(a) = 0)
—(h € S(A): h(1+a) = 1.

So we see, thanks again to the preceding lemma, that I" 1s a basic open subset.
[n the same way, we can show that every basic open set is a basic closed set. W

Lemma 2.86 The topological space S(A) is compact.

Proof First of all, since the topology on {0, 1}* is Hausdorff, so is the topology
of S(A).

Next, we must show that from any family of closed subsets of S(.A) whose
intersection isempty, we canextracta finite subfamily whose intersection is already
empty. But we have seen (Lemma 2.13) that it suffices to do this for families of
basic closed sets. Now, as we have just seen, the basic closed sets coincide with
the basic open sets. So consider an infinite family (X ;); ¢ of basic open subsets
of S(A) such that ﬂje ; £; = . By the preceding lemma, there exists, for each
J € J, aunique element x; in A such that

%; = {h € S(A) : hixj) =1},

Set X = {x; : j € J}. Tosay that the intersection of the family (X ;) j<s is empty
is to say that there is no homomorphism of Boolean algebras from A into {0, 1}
that assumes the value 1 for all elements of X, or again, that there is no ultrafilter
on A that contains X. This means (Lemma 2.81) that X is not a filterbase. So there
exists a finite subset {x, x;,, ..., x;} S X whose greatest lower bound is zero.
So no ultrafilter on A could simultaneously contain x , xj,, and ... and xj,. In
other words, no homomorphism from A into {0, 1} can simultaneously assume the
value 1 at the points x;, xj,, and . .. and x;, . This amounts to saying that

Ejl ﬂzjzm'”ﬁzj}k = 0.

We thus have a finite subfamily of the family (X;) jc; whose intersection is
empty. |

Remark 2.87 We can give a different proofthat S(A) is compact by invoking the
fact that {0, 1}2 is itself compact (Theorem 2.20). It would then suffice to show that
S(A) is closed in {0, 1}* (since every closed subset o fa compact space is compact):

Fora € Aand b € A, set

Qa,b) ={f € (0,1} : f(ab) = f(a)f(b)and f(1 +a) =1 + f(a)}.
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From Theorem 2.45, we have S(A) = [ \ueca R2(a, b). But for all elements a and
beA

b of A, we can write:

Qa, b) =

(fe{0,1}": f(@)=0and f(b) =0and f(ab) =0and f(1+a) =1)
L{f €{0,1}*: f(a)=0and f(b) =1and f(ab) =0and f(1+a) = 1)
U{f €0, )% f(a) =1and f(b) =0and f(ab) = 0and f(1+a) = 0)
U{fef{0,1): f(@a) =1and f(b) =1and f(ab) =1and f(1+a) = 0).

All fourof the setsonthe right side of this equality are basic open subsets of {0, 1},
hence are clopen. So in particulay; their union is closed. So the intersection of all
setsof the form Q2 (a, b) as a and b range over A is a closed subsetof {0, 1}*. And
as we have seen, this intersection is S(A).

For us, this second proof suffers by depending on a theorem that we did not
prove (Tychonoff’s theorem, which was invoked to claim that {0, 1}4is compact).
The first proof that we gave depends on Krull’s theorem, which we did prove in
Section 2.1.

Corollary 2.88 The Stone space of A is a Boolean topological space.

Proof Indeed, the space is compact (Lemma 2.86) and is zero-dimensional
(Lemma 2.83). [ ]

Lemma 2.89 The set of clopen subsets of S(A) coincides with the set of its basic
open sets.

Proof We already know that all the basic open sets are clopen (Lemma 2.83).

Conversely, let I" be an arbitrary clopen subset of S(A). As I" is open, it is a
union of basic open sets: for example, I' = |J,;; I'; for some subset J C I. But
since I is a closed subset of the compact space S(.A), it isitself compact. So from
the open covering (I";);es of I', we can extract a finite subcovering, for example:
r=r;urlr,,u..-urlj, . Weknow (Lemma 2.84) that we can find elements
X1.X2,...,Xm 1n A such that

foreveryk € {1,2,...,m), I'j, = {h € SCA) : h(xx) = 1}.

Setx =x) v~ x3~ ---—xprandset A ={h e S(A) : h(x) = 1}; we will show
thatI" = A.Every element of I" is a homomorphism that assumes the value 1 on at
least one of the points x, xo, ..., X, so it also assumes the value 1 at x which is
their least upper bound. Thus,I' € A. Ontheother hand, any homomorphism that
is not in I', and so does not assume the value 1 at any of the points xi, x2, ..., xm,
must assume the value 0 at each of these points, and so too at the point x which is
their least upper bound; so it cannot belong to A. This proves that A C I'. Finally,
I’ = A, and as A is a basic open set (by Lemma 2.84), I' must be one as well. ®
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2.6.2 Stone’s theorem

Theorem 2.90 (Sione’s theorem) Every Boolean algebra is isomor phic to the
Boolean algebra of clopen subsets of its Stone space.

Proof The Boolean algebra of clopen subsets of S(A) is denoted by B(S(.A))
(see Example 2.56).

Let H denote the map from A into g (S(A)) which, with each element a in A,
associates

H(@a) = {he S(A): h(a) =1}.

Letusshow that H is anisomorphism of Boolean algebras from .4 onto B(S(.A)).

According to Lemmas 2.84 and 2.89, the map H assumes its values in B(S(.A))
and its image is the whole of B(S(.A)). So H is a surjection from A onto
B(S(A)).

By virtue of Theorem 2.48, to show that H is an isomorphism of Boolean
algebras, it suffices to guarantee that for all elements x and y in A, x < y if
and only if H(x) € H(y).

So let x and y be two elements of A. If x is less than or equal to y, then for
any homomorphism A that satisfies A(x) = 1, we must also have hA(y) = 1, which
means that H(x) is a subset of H(y). If x is not less than or equal to y, then
x(1+ y) # 0(Lemma 2.31). So we may consider the principal filter generated
by x(1 -+ y), an ultrafilter that includes it (by the ultrafilter theorem) and the
homomorphism A € S(.A) associated with this ultrafilter. We have A(x (1+y)) = 1,
hence A(x) = 1and h(1 + y) = 1,i.e. h(y) = 0. We conclude that h € H(x) and
h ¢ H(y),and so H(x) is notincluded in H(y). |

Stone’s theorem allows us to give a very simple proof of Theorem 2.50.

Corollary 2.91 Every finite Boolean algebra is isomorphic to a Boolean algebra
of subsets of some sel.

Proof If the set A is finite, then the topology on {0, 1} is the discrete topology.
So this is also the case for the topology induced on the subset S(.A). All subsets of
S(A) are then both open and closed. So the Boolean algebra B(S(.A)) coincides
with € (S(A)) and A is isomorphic to g (S(.A)). ]

In the case of an arbitrary Boolean algebra, what Stone’s theorem shows is that
it is isomorphic to a Boolean subalgebra of the algebra of subsets of some set
(Example 2.56).

2.6.3 Boolean spaces are Stone spaces

With each Boolean algebra, we have associated a Boolean topological space: its
Stone space S(.A), and we have seen that A is isomorphic to the Boolean algebra
of clopen subsets of this Boolean space. It is therefore natural to study the case
in which A is given as the Boolean algebra of clopen subsets of some Boolean
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topollogical space X. The problem that then arises is to compare the space X to
this other Boolean space that is the Stone space of .4, in other words, to compare
X and S(B(X)). The result of this comparison will reveal that these two objects
very much resemble each other.

Theorem 2.92 Lvery Boolean topological space X is homeomorphic to the Stone
space S(B(X)) of the Boolean algebra of clopen subsets of X.

Proof Let X be a Boolean space. According to LLemma 2.16, we can take the
Boolean algebra B(X) of clopen subsets of X as a basis for the open sets in the
topology on X.

Foreach x € X, let f, denote the map from B(X) into {0, 1} defined by

1 ifx e 2

LE =10 iy ¢ Q.

We will show that the map f which, with each x € X, associates f, is a
homeomorphism from the topological space X ontothe topological space S(B(X)).
u

As f is, a priori, a map from X into {0, 1}8(X)

that it really assumes values in S(B(X)):

, we must show, to begin with,

e Foreach x € X, f, is ahomomorphism of Boolean algebras:

Proof For any clopen subsets €2 and A of X, we have f,(€22N A) = 11if and
only if x € 2N A, 1.e. x € 2 and x € A, which is equivalent to f, (£2) = 1 and
fx({y) = 1, and hence to f,(£2) f,(A) = 1. We conclude from this that

[ (N A) = f(R2) f(A).

On the other hand, f,(X — 2) = 1ifandonlyif x € X — €, i.e. x ¢ €2, or
again, f,(2) = 0. Thus, f,(X — 2) = 1 + f,(S2). We see that the conditions
from Theorem 2.45 are satisfied: f, is indeed a homomorphism. [

e The map f is injective:

Proof Let x and y be distinct elements of X. As X is Hausdorff, we can find an
openset O suchthatx € O andy ¢ O (for example, we couldtake O = X — {y}).

But O is a union of basic open sets from the basis B(X); so there is some clopen
set 2 € B(X) suchthatx € Qand y ¢ Q. Wehave f,(R2) =1and f,(R2) =0,
which proves that f, is different from fy. |

e The map [ is surjective onto S(B(X)):

Proof Let & be anelement of S(B(X)), i.e. a homomorphism from B(X) into
{0, 1}. The ultrafilter on B(X) associated with A is

U=1(QeB(X):h(Q)=1}=h""[{1}].
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Since U has the finite intersection property (Lemma 2.81), since the elements of
U are closed, and since the topological space X is compact, we may assert that
the intersection of all the elements of ¢/ is non-empty. Let x be an element of this
intersection.

Forevery clopenset 2 € B(X), we have: either €2 € U, in which case f, (€2) =1
and h(S2) = 1, or else €2 ¢ U, in which case X - 2 € U (Remark 2.73), so
fx(2) =0 and h(2) = 0. Thus, for every 2 € B(X), f,(2) = h(2). It follows
that h = f, = f(x). |

We may observe that the element x, which we have just shown is a preimage
of & under the map f, is the unique element in the intersection of all the clopen
sets belonging to {4. To see this, note that any element y in this intersection would,
exactly as above, satisfy h = f(y), and since f is injective, this would imply
x = y. This observation will allow us to describe the inverse bijection f~!: it is
the mapfrom S(B(X)) into X that, to each homomorphism %~ of B(X) into {0, 1},
associates the unique element in the intersection of all the clopen sets belonging
to the ultrafilter 2" [{1}].

e The map f is continuous.

Proof Let G be an open set belonging to the basis of clopen subsets of S(B(X)).
According to Lemma 2.84, there exists a unique element €2 in 5(X) such that
G = th € S(B(X)) : h(2) = 1}. The inverse image of G under the map f is

xeX:freCGl=xeX:  fi(Q=1={xeX:xe Q} =Q.
So it is an open subset of X. |
e Theinverse map f~! is continuous.

Proof Let Q2 be abasic open set in the space X (i.e. anelement of B(X)). Since
f is a bijection, the inverse image of € under f ! is its direct image under f.
Thus itis the set f[€2] = {f, : x € 2}. We have to show that this is an open set
in the space S(B(X)).

Set V = {h € S(B(X)) : h(2) = 1}.

The set V is open (it is even a basic open set)in S(B(X)) (Lemma 2.84). If we
show that f[S2] = V/, this will complete the proof.

For every x € €2, we have f,(§2) = 1 by definition of f,, so f, € V. Thus
fl] < V.

Every h € V has a preimage y € X under the bijection f, say h = fy. As
h e V,wehave h(2) = f,,(R2) =1,s0y € Qand fy = h € f[Q2]. Hence, V is
included in f[S2]. |

We should remark that the proof of this last point was superfluous: there is a
famous theorem of topology asserting that any continuous bijection of a compact
topological space into a Hausdorff space is a homeomorphism (the continuity of
the inverse bijection is guaranteed).
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We have definitely established a one-to-one correspondence between Boolean
algebras and Boolean topological spaces (up to isomorphism on one side, up to
homeomorphism on the other):

e every Boolean algebrais (isomorphic to) the Boolean algebra of clopen subsets
of some Boolean topological space;

e every Boolean topological space is (homeomorphicto) the Stone space of some
Boolean algebra.

In passing, let us observe that we had very good reasons for calling compact
zero-dimensional spaces ‘Boolean spaces’.

In a natural way, we have the following two properties (which are easily proved
from all that has preceded):

e for any two Boolean algebras to be isomorphic, it is necessary and sufficient
that their Stone spaces be homeomorphic;

e for any two Boolean topological spaces to be homeomorphic, it is necessary
and sufficient that the Boolean algebras consisting of their respective clopen
subsets be isomorphic.
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EXERCISES FOR CHAPTE R 2

1. (Refer to Example 2.26) Consider a set P of propositional variables and the
associated set F of formulas. We are going to study the quotient set 7/~ i.e.
the set of classes of logically equivalent formulas. The equivalence class of a
formula F will be denoted by CI(F).

(a) Show that if, for all formulas F and G of F, we set

=Cl(F) = cl(—F) cl(F) = cl(G) =cl(F = G)
Cl(F) Acl(G) =cl(F AG) Ccl(F)< cl(G)=cl(F & G)
Cl(F) vcl(G) =cl(F v G) Ccl(F) « cl(G) =cl(F & G),

this defines internal operations on F /~ (denoted, abusively, by the same
symbols for the corresponding connectives). Show that 7/~ is a Boolean
algebra with respect to the operations < and A. (Reminder: (F & G) =
—(F & G)).

(b) Show that the order relation in this Boolean algebra is the following: for all
formulas F and G of F,

cl(F) <cl(G) if and only if H* (F = G).

(See Example 2.37).
Explain how the operations of greatest lower bound, least upper bound
and complementation are defined.

(c) Show that if the set P is finite, then the Boolean algebra F/~ is atomic;
describe the set of atoms.

2. Let E be an arbitrary set. On g (E), we define a binary operation A (symmetric
difference, see Exercise 16 from Chapter 1) as follows:

for all elements X and ¥ of o (FE),
XAY =(XUY)—(XNY)=(XNE-Y)UWE—-X)NY).

(The symmetric difference of the subsets X and Y is the set of elements of E
that belong to one and only one of these subsets).
After observing that for all subsets X andY of E we have

XAY ={xeE: :xe X & xell

show, using the properties o f the usual connectives, for instance A and <, that
the set go (£), with the two binary operations A and N, is a Boolean algebra.
For this Boolean algebra, explain how the order relation and the operations of
greatest lower bound, least upper bound and complementation are defined.
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3. Let A=(A,+, x,0,1) and B = (B, +, x,0, 1) be two Boolean algebras and
let f be an isomorphism of Boolean algebras from .4 onto B.

(a) Show that an element @ € A is an atom of A if and only if f(a) is an
atom of B.

(b) Show that A is atomless if and only if B is atomless.
(c) Show that A is atomic if andonly if B is atomic.

(d) Show that a subset / C A is an ideal of A if and only if f[/], its direct
image under f, is anideal of B.

(e) Show that a subset &/ C A is an ultrafilter of A if and only if f[/] is an
ultrafilter of B.

4. We say that a Boolean algebra (A, +, x, 0, 1) is complete if and only if every
non-empty subset of A has a greatest lower bound.

(a) ShowthatforaBoolean algebrato becomplete,it is necessary and sufficient
that every non-empty subset have a least upper bound.

(b) Show that a Boolean algebra that is isomorphic to a complete Boolean
algebra is complete.

(c) Show that the Boolean algebra of subsets of a set is complete.

(d) Show thatif E is infinite, the Boolean algebra of subsets of E that are finite
or cofinite (see Example 2.55) is not complete.

(e) Is the Boolean algebra of classes of logically equivalent formulas of the
propositional calculus (see Exercise 1 above) complete?

(f) Show that for a Boolean algebra to be isomorphic to the Boolean algebra
of subsets of some set, it is necessary and sufficient that it be atomic and
complete.

5. Let A= (A, +, x,0,1) be a Boolean algebraand let B = (B, +, x,0, 1) bea
Boolean subalgebra of .A. Show that an element of B that is an atom of A must
also be an atom of B but thatthere can be atoms of B that are not atoms of A.

6. Let A = (A, +, x,0,1) be a Boolean algebra. Show that for every element
a € A, the set

B={xeA:x>aorx <1+ a}

is a Boolean subalgebra of A and thatitis a complete (see Exercise 4 above)
Boolean algebraif A itself is complete.

7. Let A= (A, +, x,0, 1) be a Boolean algebra. Consider a non-empty subset Z
of ¢ (A) whose elements are filters on .A.

(a) Show that the set ()., F, the intersection of the filters that belong to Z,
is also a filteron .4, but that the union | . F of the elements of Z may
not be a filter.
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10.

I1.

12.

(b) Suppose, in addition, that Z is totally ordered by the inclusion relation.
Show that in this case, | J., F is a filter on A.

. Let E be a countable subset of g (N) that has the finite intersection property

(i.e. E is a filterbase in the Boolean algebra g (N)). The set of filters on g (N)
thatinclude E is then non-empty andthe intersection of the elements of this set
(see Exercise 7 above) is called the filter generated by E.

Show that if the filter generated by E is an ultrafilter, then it is the trivial
ultrafilter.

. Consider a set P of propositional variables and its associated Boolean algebra

F /~ (see Exercise 1). We say that a class x € F /~ is positive if there is at

least one formula F in x which does not contain any occurrences of the negation

symbol.

(a) Show that for any class x € F/~, x is positive if and only if for every
formula F € x, §1(F) = 1(6) is the assignment of truth values that assigns
the value 1 to every variable: see Exercise 20 from Chapter 1.)

(b) Show that the set J of positive classes is an ultrafilter in the Boolean alge-
bra F /~.

(c) What is the homomorphism from .7/~ into {0, 1} associated with this ul-
trafilter?

Let X be a topological space. A subset ¥ C X is said to be dense in X if and
only if every non-empty open subset of X has a point in common with Y. (Some
authors say everywhere dense instead of dense.) An element x € X is called
an isolated point if and only if the singleton set {x} is an open subset of X.
Let A= (A, +, %, 0,1) be a Boolean algebra. Let S denote its Stone space
and let H denote the isomorphism from A onto B(S) defined in the proof of
Stone’s theorem (Theorem 2.90).
(a) Show that forany element x € A, x is an atom of A if and only if the set
H(x) is a singleton.

(b) Show that A has no atoms if and only if the topological space S has no
isolated points.

(c) Show that A is atomic if and only if the set of isolated points of S is
dense in S.

We say that a Boolean algebra (A, 4+, x, 0, 1) is dense if and only if the order
relation < on A is dense, which means that for all elements a and b of A, if
a < b, then there exists at least one element ¢ € A such thata < ¢ < b.
Naturally, it is important not to confuse the notion of dense Boolean algebra
with the notion of dense subset of a topological space introduced in Exercise 10.
Show that a Boolean algebra is dense if and only if it has no atoms.

The purpose of this exercise is to show that, up to isomorphism, there is only
one countable atomless Boolean algebra.
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Consider a Boolean algebra A = (A, +, x,0, 1) that has no atoms. Assume
that the set A is countable and fix an enumeration A = {a, : n € N}.

(a)

{b)

Given a non-zero element x in A, a splitting of x is a pair (y, z) € A? such
thaty #0,z2# 0,y ~z =0,and y —« z = x. Show that (y, 2) is a splitting
of x ifandonly if 0 < y < xandz = y+ x. Show that in A, every non-zero
element has at least one splitting.

Show that it is possible to define a family:
{MS(}E] ey - (€05€81,...,6n—1) €{0,1}", n e N}
of non-zero elements of A such that uy = 1 and, for every integer n,
(“8081...8,,_[0, Ugpey...en—1 1) 1sa Splitting of Uegoey...en_ o
and if ugye,..c, | ™ an 0 and vgye g, , ~ (14 an) # 0, then
Ugpey...6n_10 = Ugpey...ep1 7 Qn

and

Ugpey...en—1] = Ugpey...ep g T (1+ay).

(Thus, if ap ¢ {0, 1}, then uo = ag and u; = 1 + ag; otherwise, (#o, %1)
is an arbitrary splitting of 1).

(c) Show that for every element x € A and every sequence € = (&n)peN Of

(d)

(e)

elements of {0, 1}, one and only one of the following two conditions is
satisfied:

(i) foreveryn € N, x ~ ugye,...e,_16, 7 0;

(ii) foreveryn € N, (1 +x) ™ Uegey..en-160 & 0.

Consider two integers m and n satisfying0 < n <m andm + n + 2 ele-
ments &g, €1, ..., En €0, 81, ..., $m 10 {0, 1}. Show thatforugye,..e, 16, ™
Ueor,...Cm_1Lm 1O bE NON-ZeErO, it 1S necessary and sufficient that £g = ¢o and
g1 = ¢ and...and &, = ¢a.

Let & be the map from A into g ({0, 1}"*) which, with each element x € A,
associates

h(x) ={f €{0,1}" : (vrn e N)(x ~uro)f(n..f)) 7 O}

Show that 4 is an isomorphism of Boolean algebras from A onto the
Boolean algebra 5({0, 1)) of clopen subsets of {0, I}N.
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13. See Example 2.57 for the notation used here.

(a) Show that the map g from {0, 1} into {0, 1/~ which, with each
assignment of truth values §, associates the homomorphism kg from F/~

into {0, 1}, is a bijection from {0, 1}* onto the Stone space S(F /~).
(b) Show, without using the compactness theorem, that for any subset 7" of F,

T is satisfiable if and only if the set 7/~ = {cl(G) : G € T} is a filterbase
in the Boolean algebra 7 /~.

(c) Use this result to provide a new proof of the compactness theorem for
propositional calculus (Theorem 1.39).

14. Let A = (A, <, 0, 1) be a Boolean algebra and leta be anelement of A. Let B
be the principal ideal generated by a (Example following Corollary 2.61) and
I be the principal ideal generated by a®:

B={xeA:x <a};

l={xeA:x5aC].

(a) Show that the order relation < g, the restriction to B of the orderrelation <on
A, makes B into a Boolean algebra. Compare the operations in this Boolean
algebra with the corresponding operations in the Boolean algebra A.

(b) ShowthattheBooleanalgebra (B, <pg) isisomorphic tothe quotient Boolean
algebra A/I.

15. Let E beanon-empty finitesetandlet.Abe the Boolean algebra of subsets of E .

(a) Show that for a subset I C g (FE) to be an ideal of A, it is necessary
and sufficient that there exists a subset X ¢ E (strict inclusion) such that
I = p(X).

(b) LetC = (C, <,0,1) bean arbitrary Boolean algebra and let 2 be a homo-
morphism from A into C. Show that there exists a unique subset K C E
such that forevery element Y € 9 (E), h(Y) =0if andonly if Y C K.

Let Z be the complementof K in E.
Show that the restriction of 4 to g(Z) is an isomorphism of Boolean
algebras from g (Z) onto the image of A under 4 (which is a Boolean

subalgebra of C).

16. Let A = (A, <, 0, 1) be a Boolean algebra.
(a) Show that if A is finite then every ideal of A is principal. Compare this
result with that from Exercise 15(a).

(b) Show that if there exists an integer k > 1 and atoms aj, a2, ..., ar of A
such thata) v a3 —« --- < q; =1, then A is finite.

(c) Assume that the Boolean algebra A is infinite. Show that the set
G={xe€ A:1+ xisanatom}

is a filterbase on A.
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(d) Again suppose that A is infinite. Show that for an ultrafilter Z/ on A to be
non-trivial, it is necessary and sufficient that G be included in /. Use this
result to reprove Theorem 2.77.

(e) Show that for the existence of a non-trivial ultrafilter on A, it is necessary
and sufficient that A be an infinite Boolean algebra.

Let E be a set and let A = (> (E), C) be the Boolean algebra of subsets of E.

(a) Considera family (E;);¢; of subsets that constitutes a partition of E (which
means each E; is non-empty, that | J;c; E; = E, and that for i # }J,
E; # Ej). Show that the set

B= {Xego(E):(;ugI)(X: UE})}

JEJ

is a Boolean subalgebra of A and that each of the E; is an atom in this
Boolean subalgebra.

(b) Suppose that E is finite and non-empty and that C is a Boolean subalgebra
of go (E’). Show that the atoms of the Boolean algebra C constitute a family
of subsets of E that partitions E'.

(c) Show thatif E isa non-empty finite set, there is a bijection between the set
of partitions of E and the set of Boolean subalgebras of g (E).

(a) IseveryBooleansubalgebraof anatomic Booleanalgebraanatomic Boolean
algebra?

(b) Are there Boolean algebras all of whose Boolean subalgebras are atomic?

(c) Is every Boolean subalgebra of an atomless Boolean algebra an atomless
Boolean algebra?

(d) Are there Boolean algebras all of whose Boolean subalgebras are
atomless?

(e) Is every Boolean subalgebra of a complete Boolean algebra a complete
Boolean algebra?

(f) Are there Boolean algebras all of whose Boolean subalgebras are
complete?

Let A and A’ be two Boolean algebras and let S(A) and S(A”) be their Stone

spaces.

(a) Show that we can establish a bijection ® between the set Hom(A, A") of
homomorphisms of Boolean algebras from A into A’ and the set C 0(s(A),

S(A)) of continuous maps from S(A’) into S(A).

(b) Show that for every homomorphism ¢ € Hom(A, A"), ¢ is injective
(respectively, surjective) if and only if ®(¢) is surjective (respectively,
injective).



3 Predicate calculus

The fundamental work of the mathematician is to examine structures, to suggest
properties that might pertain to these and to ask whether these properties are sat-
isfied or not. Predicate calculus is, in some way, the first stage in the formalization
of mathematical activity. Two aspectsare involved: first, we provide ourselves with
Sformal tools that are adequate to name these ob jects (these will be the terms) and
to express (some of) their properties (these will be the formulas); second, we study
the satisfaction of these properties in the structures under consideration.

As with the propositional calculus, the formulas are sequences of symbols that
are taken from some alphabet and that obey precise syntactic rules.

There will not be a unique alphabet but rather an appropriate alphabet, called a
language, for each type of structure under consideration. By structure, we mean a
non-empty set M, provided with the following: a certain number of distinguished
elements; for each positive integer p, a certain number of p-place relations on M
(also called ‘predicates’, hence the expression ‘predicate calculus’); and for each
positive integer p, a certain number of functions from MP into M. Obviously,
we would not use the same language to speak, for example, of groups and of
ordered sets.

Certain symbols are common to all the languages: these are the propositional
connectives and parentheses, already used in propositional calculus, but also, and
this is the essential innovation, the quantifiers ¥ (‘for all’) and 3 (‘there exists’)
and the variables vo, v, . . ..

The other symbols depend on the type of structure we have in mind; they will
represent distinguished elements, predicates or functions. For example, for groups,
we need a constant symbol (to represent the identity element) and a symbol for
a binary function (to represent multiplication). For ordered sets, we only need a
symbol for a binary relation.

The formulas that are involved here are called ‘formulas of first order predicate
calculus’. The reason for this name is that the quantifiers will range over elements
of the structure. There are numerous mathematical properties for which this re-
striction is fatal. For example, to express the fact that a set A is well ordered, we
need to say: for every subset B of A, if B is not empty, then B contains a least
element. We note that the quantifier ‘for all’ in this definition ranges over subsets
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of A and not over elements of A. This is a second order quantifier. T he concept of
a well-ordered set is not expressible by a first order formula.

The problems of syntax, treated in Section 3.1, are substantially more compli-
cated than for the propositional calculus. First of all, because we have to de fine
terms before we can define formulas; second, because we have to introduce the
notions of free and bound variable: we immediately sense that the status of the
variable vg is not the same in the following two formulas: vg + vg =~ vg and
Vvo(vo + vo = vg). We say that vy is free in the first and bound in the second. This
distinction is fundamental in what follows.

InSection 3.2, we temporarily abandon logic to explain what we mean by struc-
ture. In Section 3.3, we define satisfaction of a formula in a structure (we also
say that the structure is a model of the formula). The two facts mentioned above,
particularly the fact that we will have to define satisfaction for formulas that
contain free variables, will weigh us down considerably. But the reader must
not be worried: despite its complication, the definition of satisfaction involves
nothing more than what the reader would probably have guessed from the
beginning.

In Section 3.4 we show that every formula is equivalent to (i.e. is satisfied in the
same structures as) a formula that is written in a very particular form (with all the
quantifiers at the beginning: this is called a prenex form). We will also see how to
eliminate existential quantifiers by adding function symbols to the language (the
Skolem form). In Section 3.5, we will present the ABCs of model theory, which is
the study of the correspondence between a set of formulas and the class of models
of this set. This will be studied in more depth in Chapter8. Finally, in Section 3.6,
we will examine the behaviour of equality, which is a binary predicate not quite
like the others.

3.1 Syntax

3.1.1 First order languages

Definition 3.1 A first order language (often we will simply say language) is a
set L of symbols composed of two parts:

e the first part, commonto all languages, consists, on the one hand, of a countably
infinite set,
v ={v0, v],...,vn,...},

of elements called symbols for variables or more simply variables, and, on the
other hand, of the following nine symbols:

* the parentheses: ), ( and the symbols for the connectives: —, A\, VvV, =, &
used previously in propositional calculus,

x and two new symbols:
V, which is called the universal quantifier and is read as ‘for all’, and
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3, which is called the existential quantifier and is read as ‘there exists at least
one’ or ‘for at least one’ or simply ‘there exists’;
(each of these quantifiers is called the dual of the other),

e the second part, which can vary from one language to another, is the union of
a set C and of two sequences (Fn) neN+* and (R ,)eN+ Of Sets ( pairwise disjoint
and all disjoint from C);

x the elements of C are called constant symbols;

x for every integer n > 1, the elements of Fn are called n-place (or n-ary
or of arity n, or with n arguments) function symbols (or functionals) and
the elements of R, are called n-place (or n-ary or of arity n, or with n
arguments) relation symbols (or predicates); (we say unary, binary and
ternary respectively instead of 1-ary, 2-ary and 3-ary);

* we consider one particular symbol with a special status that will be explained
later: the symbol ~, called the equality symbol, which, when a first order
language contains it, is an element of R, i.e. is a binary relation symbol.
Languages that contain this symbol are called languages with equality.

Except in one important circumstance (see Chapter 4), the languages we
encounter in this text will be of this type and when we say ‘language’, with no
modifier, we always mean a language with equality.

Of course, all the symbols that we have just listed and which constitute the
language are assumed to be pairwise distinct.

Thus, to have a first order language, L, is to define the two sequences (R »),,eN+
and (Fn),eN+ and to consider the set:

L=VU{.(AV, =, V. IJUCU (Rp)neN U (Fr)nenr-

The symbols for the constants, the functions and the relations are sometimes
called the non-logical symbols of the language. Some other presentations differ
slightly from our own: it can happen that constant symbols are treated as O-place
function symbols or that specific O-place relation symbols are allowed, T (‘true’)
and L (‘false’). These slight variants do not modify anything that is essential in
what follows.

In mostof the cases that we will examine, the languages will involve only a small
number of symbols for constants, functions and relations, so that in practice, most
of the sets R, and F» will be empty and those that are not empty will contain at
most two or three symbols. Under these circumstances, rather than give a fastidious
definition of the sequences (Rx),ecn+ and (Fn)neN+,» We will be content to provide
a list of the symbols that appear in these sequences, while indicating their status
(relation, function) and their arity, and to specify the elements of the setC.

As it is obviously pointless to repeat, for each language, the unchanged list of
symbols consisting of, for example, the variables, the connectives and quantifiers,
we will commit the abuse that consists in identif ying a language with the list of its
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symbols for constants, functions and relations. Thus, when we are led to say:

‘Consider the language L. = {R, ¢, f, g} where R is a binary relation symbol, ¢
is a constant symbol, and f and g are two unary function symbols’, this will mean
that we are interested in the set C = {c} and in the two sequences (R »),cn+ and
(Fn)nen+ defined by:

Rr={= R}, Rpn=0 forn+#?2,
Fi={f.g} and Fn=0 forn=> 2.

(In the absence of any mention to the contrary, the language will be one with
equality.)

Startingfroma firstorderlanguage viewed as an alphabet, we will now construct,
following the inductive method used previously for the propositional calculus, a
family of words that we will call the first order formulas associated with our
language. To do this will require an intermediate step in which we define, also
inductively, another family of words called terms.

As our ultimate purpose is to use the language to formally describe certain
properties of mathematical objects (or individuals), we may intuitively consider
that terms will serve as names to denote these individuals whereas the formulas
will serve as statements of facts concerning them.

Let us consider a first order language L.

3.1.2 Terms of the language

The symbols that serve as raw materials for the construction of terms are the
variables and the function symbols. Note that the parentheses are not involved in
writing terms.

Definition 3.2 The set T (L) of terms of the language L is the smallest subset of
W(L) that:
e contains the variables and the constant symbols (i.e. includes the set V U C);

e is closed under the operation
(mi,my ...,mp)— fmmy...my

for every integer n > 1 and every element f € Fp.

In other words, terms are words that can be obtained by applying the following
rules a finite number of times:

e variables and constant symbols are terms (recall that we do not distinguish
between a symbol of the alphabet and the word of length 1 consisting of this
symbol);

e ifn € N* if f is an n-ary function symbol of L, andif ¢, t2, ..., t, are terms,
then the word ft1t7...1, Is a term.
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After this definition ‘from above’, let us consider the equivalent definition ‘from
below’:
Set 79(L) = V UC, and for every integer k, set

Ter1 (L) =T(L)U ( (ftit2...1n 2 f € Fos 11 € Ti(L),
neN*

th e Ty(L), ..., t, € T (L)).

Definition 3.3 The height of a term t € T (L) is the least integer k such that
t € T (L).

Observe that in a language, there are always terms of height O: the variables; but
it is altogether possible that there are no terms whose height is non-zero (this will
happen when there are no function symbols at all).

For terms, we can define the concept of a decomposition tree in a manner anal-
ogous to the one we used for formulas of the propositional calculus, with the
difference that at each node, there can be any number of branches, this number
being precisely the arity of the function symbol used at the given stage in the con-
struction of the term. There will also be a unique readability theorem (3.7) which
will guarantee the uniqueness of the decomposition tree.

Consider, for example, the language that has one constant symbol ¢, one unary
function symbol f and a ternary function symbol g. Consider the word

W = ggffvoguawcfeffgfcgvafvoffcfese.

Is this a term of the language?
After careful inspection, or a few probings, or with a bit of luck, by setting

r =gffvogvavocfc, s = ffgfcgvafw ffcfc, and t= fc,

and, even better, by inserting spaces wisely,

r=g ffvogvavoc fc, s=f fg fcguvafvffcfc, and t= fc,

A !
f}{o gvz[voc = fe s|1
I R NI |
e e </ T } AN
" (R A N

¢ o—n
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we discover that r, s and ¢ really are terms and that the proposed word W,
which is written grst (a ternary function symbol followed by three terms), is
itself a term (of height 7) whose decomposition tree is not difficult to sketch (to
improve its legibility we have set s3 = gv2 fvoffc,s2 = gfcsifcand s) = fs2,
so thats = fs1).

The theorem that follows furnishes a simple test for determining whether a word
in a given language is or is not a term. It also provides, when the test is positive,
a method for finding the decomposition of the term. Finally, it provides us with a
simple proof of the unique readability theorem. First we give a definition:

Definition 3.4 The weight of a function symbol is equal to its arity minus 1. The
weight of a variable or a constant symbol is —1. If W is a word written with
variables, constant symbols and function symbols, the weight of W, denoted by
p(W), is the sum of the weights of the symbols that occur in the word W (the
weight of the empty word is 0).

We say that a word W satisfies the rule of weights if and only ifthe weight
of W is —1 and the weights of all its proper initial segments are greater than or
equal to 0.

Theorem 3.5 Fora word W, written with variables, constant symbols and func-
tion symbols, to be a term, it is necessary and sufficient that it satisfy the rule of
weights.

Proof First we will show, by induction, that all terms satisfy the rule of weights.
As far as variables and constant symbols are concerned, this is clear: their weight
is equal to — | and they do not admit any proper initial segments.
Consider an integern > 1, an n-ary function symbol f andntermsty, £2, ..., tn
which are assumed (by the induction hypothesis) to satisfy the rule of weights.
Sett = ftirn---tn.
Wehave p(t) = p(f)+po(t1)+p0o@2)+---+pty) =n—1+nx(—1)=—1.
Now let m be a proper initial segment of ¢. Then there exists an index i €
{1,2,...,n}and an initial segment m; of ¢; such that

m= ftitp---ti_ym;.

Note that if i = n, m; is necessarily a proper initial segment of¢t; but that if i # n,
then m; might also equal ¢; or the empty word.
We have

p(m) =p(f)+ p(t1) + o)+ -+ plti-1) + p(mi)
=n—14+(i—1) x(=1)+ p(@m;) (by the induction hypothesis)
=n—1i+ p(m;).

Now, by the induction hypothesis, po(m; ) is either —1 or is an integer greater than
or equal to O (according as m; = t; or not). It follows that p(m) > n—i — 1, which
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1s a number greater than or equal to zero if i is strictly less than n. If i = n, then
m; # t; (otherwise m would equal t), and so p(m) = p(m;) > 0.

We see then that, in all cases, the weight of m is greater than or equal to zero,
which shows that ¢ satisfies the rule of weights.

Now we have to show the converse: that every word that satisfies the rule of
weights is a term. We will prove it by induction on the length of words.

The word of length O does not satisfy the rule of weights (its weight is 0).

If a word of length 1 satisfies the rule of weights, then its weight is —1. Thus
we are dealing with either a variable or a constant symbol, so it is, in all cases,
a term.

Consider an integer k > 1. Suppose (this is the induction hypothesis) that any
word of length strictly less than k that satisfies the rule of weights is a term.
Consider a word W of length k& which satisfies the rule of weights. For example,

W =uwias ...,

where the «; are variables or constant symbols or function symbols (so that
p(a;) > —1 for every i).
Thus we have p(W) = —1 and, foreveryi € {1,2,...,k — 1},

plaras ...a;) > 0.

Since k > 1, o; is a strict initial segment of W; thus p(«1) > 0, which shows that
o must be a function symbol of arity at least equal to 1. Denote this arity by n + 1
(n= p(a1) > 0).

Ifn = 0,the worda a3 . . . v satisfies the ruleof weights (suppressing the initial
symbol of weight O changes neither the total weight nor the weights of any proper
initial segments); since the length of this word is k — 1, the induction hypothesis
applies: therefore aya3 ...k 1s a term; and so is W since, in this case, o) is a
unary function symbol.

Now let us examine the case n > 0.

Denote by ¢ the map from {l, 2, ..., k} into Z which associates with each
index, i, the value

¢(@) = plaraz...a;) = plag) + plaz) +--- + pla;).

Wehave ¢ (1) = n > Oand ¢ (k) = —1. Since the passage from ¢ (i) togp(i + 1)
adds an integer, p(a;+1), that 1s greater than or equal to —1, we see that the map
¢, to get from its initial value n to its final value —1, must assume each of the
intermediate values n — 1, n — 2,...,1, 0, at least once (this function cannot
decrease by more than 1 at each step).

Denote by j; (and by 2, ..., Jn respectively) the first integer in {1, 2, ..., k}
for which the function ¢ takes the valuen — 1 (n —2, ..., Orespectively). Extend
this by setting jo = 1 and j,,.+; = k sothat ¢ (jo) = n and ¢(j,+1) = —1.
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We must have

j0:1<jl <j2<"'<jn < Jn+1 = k.

(The argument that we just gave can b e repeated to prove that the function ¢ can
not pass from the value ¢(1) = n to the value ¢ (j2) = n — 2 without assuming at
least once the value n — 1, hence j; < j;, and soon.)

Set

I =0w2...0j, D =0j41.--Qjy, -+,
tn:ajn—1+l---ajm In41 =0, +1-.-0k.
We are going to show that each of these n + 1 words is a term; given that ¢] is a
function symbol of arity » + [ and that the word W is written «)#1¢£2 . . . 2,4, this

will prove that W is also a term.
Let & be an integer such that 1 <h < n + 1. We have

Ih =0, _(+1-.-0jp;
hence

Pn) =0Un) —d(jn-1)=n—h—(n—(h—1)) = 1.

Moreover, if ), had a proper initial segment whose weight is strictly negative, this
would mean that there exists anindex i € {j,_) + 1,..., j» — 1} such that

P(jportl---0) = @) — d(jn_1) = ¢@{i) — (n — (h — 1)) < 0;
or again,

o) <n-—h.

But ¢ (jo—1) = n — h + 1. According to the argument already used twice previ-
ously, the value n — A would then be assumed by the function ¢ for some index
between j,— andi,1.e. strictly lessthan j, and this would contradict the definition
of jh-
We have thereby proved that ¢, satisfies the rule of weights and, as its length is
strictly less than k, we conclude from the induction hypothesis that it is a term.
|

The unique readability theorem (for terms) will be proved in two stages.
Lemma 3.6 Foranytermt € T (L), no proper initial segment of t is a term.

Proof Thisis an immediate consequence of the rule of weights: if ¢ is a term and
u 1s a proper initial segment of ¢, then the weight of u is positive or zero, and so u
cannot be a term. ]
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Theorem 3.7 (unique readability theorem for terms) For any termt € T (L),
one and only one of the following three cases applies:

e tisavariableof L,
e tisa constant symbol of L;

e thereisauniqueintegerk > 1, auniquek-ary function symbol [ ofthe language
L and a unique k-tuple (uy, u2, ..., ux) € T(L)X such thatt = fuiuz . . . ux.

Proof Consider aterm ¢t € 7 (L). By the definition of 7 (L), we are in one of
the first two cases, or else in the third but without any guarantee in advance of
uniqueness. It is clear, moreover, that these three cases are mutually exclusive (to
see this, it suffices to examine the first symbol in the word ¢). So the only thing
that we have to prove is the uniqueness for the third case.

For this, consider two natural numbers k and A, two function symbols f and g of
the language L that are k-ary and h-ary respectively and kK + h terms ¢y, t2, . . ., Ik,
Ui, u2,...,u, in 7 (L) and suppose that:

lz‘fﬁtz...l‘k = guily ... up.

From this equality, we conclude that f and g are identical (they are the first
symbols of the same word) hence their arities are equal. So we have

t=ftitr...tr = fujuy...uy.
Suppose now that there is some index i € {1, 2, ..., k} such that
ty=uj, n=u2,...,ti—t =ui—i, and t; # u;.
After simplif ying, we obtain
Litiv .. 0 = Ujlhjyy ... UL,

which proves that one of the two terms ¢; and u; is a proper initial segment of
the other (this property was established at the beginning of the text in the section
‘Notes to the Reader’). But this situation is precisely what is forbidden by the
preceding lemma. ]

Definition 3.8 A term in which there is no occurrence of a variable is called a
closed term.

We immediately see that a closed term must contain at least one occurrence of
a constant symbol. It follows that for a language that has no constant symbols,
there are no closed termes.

Notation: Given a term ¢t € 7 (L) and pairwise distinct natural numbers
i1,i2,...,in, we will use the notation ¢t = ¢[v;,, vi,, ..., v;,] to indicate that the
variables that have at least one occurrence in the term ¢ are among v;, , Uiy, . . ., Uj, -
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We should note that for any term ¢z, there is an integer m such that
t=tlvo, v, ..., Unl;

(because ¢t involves only a finite number of symbols, and hence a finite number of
variables, it suffices to let m be the largest of the indices of all the variables that
have at least one occurrence in t).

3.1.3 Substitutions in terms

Definition 3.9 Ler k be a natural number, let w|, w2, . .., wy be pairwise distinct
variables, and let t, uy, uz, ..., ux be terms. The word tu, jw, uyjwo. ... ux fwy (read
as ‘t sub u) replaces wi, uz replaces wa, ..., ux replaces wy’) is the result of
substituting the terms u\, u2, . . ., uk for the variables wi, wy, . .., wy respectively

for all occurrences of these variables in t and it is defined by induction (on t) as
follows:

e ift is a constant symbol or a variable other than w|, wa, ..., Wy, then

Ty fwyugfwy....upfwye = 13

o Ift =w; (1 <i <k) then

buy fwy g fwa,. g fwye = Ui

o ift = fnty...t, (where n is an integer greater than or equal to I, f is an
n-ary function symbol and t1, t2, . . ., t, are terms), then

tu, J Wi Jwa,..ty fwy

Lemma 3.10 For any natural number k, any pairwise distinct variables wy,

W2, ..., W, and termst, uy, uz, ..., uk, the word tuy jwy,uz/ws. ..., Jw, S @ term.

Proof The proof is obvious by induction on ¢. |
Notation: Given two natural numbers k and h, k + h variables zy, z2, .- -, Zh»

Wy, w2, ..., Wk,atermt[zy, 22,...,2h, W1, W2, ..., W], and k terms uy, u2, ...,

Uk, the term tu | jwy.up/wo.....ux/we Will be denoted by

tlz1, 22, .-y Zh U1, U2, . .., U]

Remark 3.11

e Obviously, it is merely for convenience in writing that we have listed the vari-
ables in an order such that those involved in the substitution appear at the end
of the list. It goes without saying that given, for example, a term

t =tlwy, wy, w3, wy, ws]
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and two arbitrary terms u and u’, we understand that the expression
tlwy, u', w3, u, ws)

can be used to denote the term

Iu’,/wz,u/w.q'

e The notation involving brackets presents some inconveniences analogous to
those we discussed earlier concerning substitutions in formulas of the pro-
positional calculus (see Chapter 1). We will use it, but with the usual
precautions.

e As with the propositional calculus, it is appropriate to recall the fact that the
substitutions defined above take place simultaneously; the same substitutions,
implemented one after another, yield different results, in general, which depend,
among other things, on the order in which they are performed.

3.1.4 Formulas of the language

We will now undertake the definition, by induction, of the set of formulas of the
language L. Here, first of all, are the formulas ‘on the ground floor’ (those that
will have height 0); we call these the atomic formulas.

Definition 3.12 Aword W € W(L) isan atomic formula if andonly if there exist
a natural number n € N¥, an n-ary relation symbol R, and n terms 11, t2, ..., In
of the language L such that

W= Ribpig...tn:

In the case where L is a language with equality and ¢ and u are arbitrary terms
in 7 (L), we agree to write

for the atomic formula

~ ru.

We will denote the set of atomic formulas of the language L by At(L).

Observe that we have unique readability for atomic formulas: we can easily
convinceourselves by noting that an atomic formula becomes a term if we replace
its first symbol (which is a relation symbol) by a function symbol of the same arity;
it then suffices to apply the unique readability theorem for terms to obtain unique
readability for atomic formulas (the convention we introduced for the equality
symbol presents no difficulty in this matter).

We may now proceed with the definition of the set of formulas of L.



SYNTAX 123

Definition 3.13 The set F (L) of (first order) formulas of the language L is the
smallest subset of VV (L) that

e contains all the atomic formulas;

e whenever it contains two words V and W, it also contains the words
W, (VAW), (VvW), (V=>W), VW)
and, for every natural number n, the words
Yv, W and v, W.

Given two formulas F and G in F (L), the formulas —F, (F ANG), and (F Vv G),
are called, respectively: the negation of the formula F, the conjunction of the
formulas F and G and the dis junction of the formulas F and G.

We are naturally led to compare the definition above, or at least the part of
it that concerns the propositional connectives, to the definition of propositional
formulas given in Chapter 1. We note in this context that the role played there
by the propositional variables is played here by the atomic formulas. The major
difference arises from the fact that there, the propositional variables were primary
indecomposable ingredients whereas here, the atomic formulas are already the
product of a fairly complicated construction. It is essential, in any case, not to
imagine any analogy between the propositional variables of Chapter 1 and what,
in this chapter, have been called variables; here they are certain symbols that are
constituents of terms, which in turn are ingredients in the production of atomic
formulas. The other obvious fundamental difference between the two situations is
the appearance of quantifiers which provide new means for constructing formulas.

By analogy with Theorem 1.3, the following theorem, whose proof is left to the
reader, provides a description ‘from below’ of the set of formulas.

Theorem 3.14 Set
Fo(L) = At(L);

and, for every integer m,
Fm41(L) = Fn(L)U {=F : F € Fin(L))
U((FaG): Fe Fm(L),G € Fu(L), a € {A,V, =, &}}
U (VogF : F € Fm(L), k € NYU({IwnF: F € Fm(L), k € NJ}.

We then have
FL) = | Fa(L).

neN

As it should be, the height of a formula F € F (L), denoted by h[F], is the
smallest integer k such that F € F,(L).
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For first order formulas, there is a unique readability theorem:

Theorem 3.15 (Unique readability theorem for formulas) For any formula F €
F (L), one and only one of the following five cases applies:

e F is an atomic formula (and there is then only one way in which it can be
‘read’);
e there is a unique formula G € F (L) such that F = —G;

e there is a unique pair of formulas (G, H) € F(L)? and a unique symbol for a
binary connective a € {\,V,=, &} suchthat F = (G a H);

o there exists a unique integer k and a unique formula G € F(L) such that
F = Vvk G,'

e there exists a unique integer k and a unique formula G € F (L) such that
F =3v,C.

Proof Wecan easily adapt the proof given for the case of formulas of the propo-
sitional calculus: here too, it is clear that the five cases are mutually exclusive
and that at least one of the cases is applicable (ignoring the feature of unique-
ness). In the last two cases, for which the propositional calculus has no analogue,
uniqueness is obvious. In the first case, unique readability has already been noted
(in the paragraph that follows Definition 3.13); in the second and third cases, the
proof from Chapter 1 carries over with no problems (in particular, the relevant four
lemmas concerning parentheses and proper initial segments remain valid). ]

Here too, we can speak of the decomposition tree of a formula: relative to the
propositional calculus, the changes are, on the one hand, that the leaves are the
atomic formulas and, on the other hand, that there are three kinds of unary branching
instead of one:

- F Yo F =y a

| | |
F F F

The sub-formulas of a first order formula are those that appear at the nodes of
its decomposition tree. To be precise:

Definition 3.16 The set ST(F) of sub-formulas of a formula F € F (L) is defined
by induction as follows:

e if F is atomic,

sf(F) ={F};

o If F=-G,
si(F) = {F}UsI(G);
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e iIf F = (G a H) where « is a symbol for a binary connective,
sf(F) ={F})Usi(G)Usi(H);
o if F =VuGorif F = 3du(G),

si(F) = {F} U sf(G).

3.1.5 Free variables, bound variables, and closed formulas

Definition 3.17 Given a natural number k and a formula F € F (L), the occur-
rences, if any, of the variable vy in the formula F can be of two kinds: free or
bound. We proceed by induction:

e if F isatomic, then all occurrences of vy in F are free;
o if F = —G, thefree occurrences of vk in F are the free occurrences of vk in G :

e ifF = (Goa H)wherea isasymbol fora binary connective, the free occurrences
of vy in F arethe free occurrences of vk in G and thefree occurrences of vy in H ;

o if F =VvuGorif F = 3v,(G),(h # k), the free occurrences of vk in F are
the free occurrences of vi in G;

o if F =YuG orif F = 3uk(G), none of the occurrences of vk in F is free.
The occurrences of vy in F that are not free are called bound .
Concerning thepassage from the formula G to the formula Vv G (v G, respec-
tively) we say that the variable v, has been universally quantified (existentially
quantified, respectively) or that the formula G has been subjected to univer-
sal quantification (existential quantification, respectively) with respect to (or
over) the variable vy.

Example 3.18 Inthe language L = {R, ¢, f} where R isabinary relation symbol,
c is a constant symbol and f is a unary function symbol, consider the formula

F =
Yvo(FviVvg(Rvivg = —vg = v3) A Yua(3ua(Rui o V fug = ¢) A v 22 v2)).

In F, all occurrences of vg and all occurrences of v, are bound; the first two
occurrences of v; are bound while the third is free; finally, the unique occurrence
of vz 1s free.

Definition 3.19 The free variables in a formula F € F (L) are those variables
that have at least one free occurrence in F. A closed formula is one in which no
variable is free.

Thus, in the preceding example, the free variables in F' are v; and v3. Conse-
quently, F is not a closed formula.

We should also note that a closed formula need not contain any quantifiers:
the formula R fcc is a closed atomic formula in the language of Example 3.18.
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However, in a language without constant symbols, there are no closed formulas
without quantifiers.

Notation: Given a formula F € F (L) and pairwise distinct natural numbers i,
{2,..., in, we will use the notation F = Fl[v;, vi,, ..., v;, ] to indicate that the
free variables of the formula F are among v;,, v;,, . .., v;,-

As 1s the case for terms, we should note that for every formula F € F (L), there
exists an integer m such that

F = Flvg, vy, ..., vpl.

Definition 3.20 Given a formula F = Flv;,, v;,, ..., v; ] of the language L in
which each of the variables v;,. v,,, ..., v; has at least one free occurrence, the
formula

VU,'] vaz e .VU,'H F

and all similar formulas obtained by permuting the order in which the variables
Viy» Vi, ..., Vi, are quantified are called universal closures of the formula F.

Observe that the universal closures of a formula are closed formulas.

Remark 3.21 We hardly ever distinguish among the universal closures of a for-
mula F and we speak of the universal closure of F, intending in this way to
denote any one of them (the choice might be dictated by the order in which the
free variables of F occur or by the order of their indices or by some other con-
sideration). This abuse of language is unimportant: we will see that the various
universal closures of a formula are all equivalent for our intended purposes, both
from the semantic point of view (in the sections that follow) and for formal proofs
(see Chapter 4).

Let us return to the formula F in Example 3.18. We said that the third oc-
currence of the variable v, as opposed to the first two, is free. This is because,
as the decomposition tree of F makes clear, the quantification Jv; ‘acts’ on the
first two occurrences but not on the third. We say that the first two occurrences
of v; are within the scope of the quantifier v;. Anticipating a precise general
definition, consider the occurrence in a formula F' of a quantifier Qv (where Q
denotes V or 3 and v the variable that necessarily follows Q in F'). The word
Qv is necessarily followed, in the word F, by a (unique) sub-formula G of F
(the word QuG being, in turn, a sub-formula of F which could be character-
ized as the sub-formula of least height that contains the occurrence of Qv under
consideration).

Definition 3.22 Using thepreceding notation, the occurrences of v that are within
the scope of the quantifier Qv are the free occurrences of v in G as well as the
occurrence of v that immediately follows the quantifier Q.
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For example, in the formula
Jv(((v ~ v) VVv—(v = v)) = v = v),

the occurrences of v that are in the scope of the first quantifier are the first three
and the last two. The fourth, fifth and sixth occurrences are excluded, despite their
being in the ‘geographical range’ of Jv, because it is reasonable to agree that each
occurrence of a variable is within the scope of at most one quantifier.

3.1.6 Substitutions in formulas

We will now define the notion of substitution of terms for free variables in
a formula. The variables in a formula necessarily occur inside terms, and since
substitution of terms for variables in a term has already been defined, our new
definition would be automatic if it were not for an important restriction that will
apply: substitution will only take place for the free occurrences of the variables
under consideration. The definition is given, as we might expect, by induction.

Definition 3.23 Consider a formula F, a natural number k, pairwise distinct
variables wy, Wo, . .., wy and termsuy, Uy, . . ., uy. Theword Fy, jwi uzjwo,....ur/wi
(read: ‘F sub u) replaces w\, uy replaces wa, . .., ux replaces wy’) is the result
of substituting the terms u\, uy, . .., Ui respectively for all free occurrences of the
variables wi, wa, ..., wy in the formula F and it is defined as follows:

e if F is the atomic formula Rt\t; ...ty (Where n is an integer greater than or
equal to 1, R is an n-ary relation symbol and t1, t2, . . ., tn are terms), then

Fu, jwiugfws,...oupfwy =
Rt

ulfwpup/wy,..upfwy tzul,‘w].ugfwg.....uk/wk e tkalfwl.uz/wz ..... upfwy?

o if F = =G, then

Ful/wl,uszz ----- up/wr — ﬂG“I/wlsMZ/wz,--w“k/wk;

e if F = (G« H) where « is a symbol for a binary connective, then

Fu, jwyuafwo,...ounjwe = Guyjwyuzjwa,eeouieJwr & Huy jwy,ug jwo, ... ug Jwis

o if F=VYvG (v ¢ {wi,wy,...,wk}), then

Ful/wl,uz/wz ..... up/wr — VvGul/wl,uz/wz,---,uk/wk;

o if F=3vG (v ¢ {w,w,...,wi}), then

Fu;/wl,uz/wg,...,uk/wk - EIvGu;/w;,ug/wg,...,u,r</w/<;

o ifF =Vw,G (i € {1,2,...,k}), then

Ful/wl,uszz,---,uk/wk:VwiGHI/wt,uszz ----- Ui 1 [ Wi U] [ Wi T e U f WY S
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o if F =3dw;G (i e{l,2,...,k)}), then

F“l/wI-MZ/wzs---euk/wk = HwiG”I/wl,lfz/wZ,----“i——l/wi--lJlH-I/wi-l-!,-...uk/wl(‘

Notation: Given two natural numbers A and k, h + k variables z{, 22, --.» Zhs
wy, W2, ..., Wk, a formula Flz1, 22, ..., zh, W[, W2, ..., wkl, and k terms u],
U, - - -, tk, the formula Fu, /wyuy fw,,...,upsw, will be denoted by

Flzi,22,...,2p,uy,un, ..., ugl.

This notation requires certain precautions similar to those already noted con-
cerning terms. Remark 3.11 concerning the distinction between simultaneous and
successive substitutions and the influence of the order of substitutions is relevant
here too.

Example 3.24 Let us revisit the formula that we have used previously as an
example:

F =
Yug (v Yug(Rvjvg = —vg =~ v3) A VYo (Jva(Rujvr V fug = ¢) A v = 17)).

Let ¢t denote the term f fc¢. Then the word Fyyy, 1s
Yvg (v Vug(Rvivg = —vg == v3) AVuo(Fua(Rffevy vV fug 22 ¢) A vy 22 12)).

The result of substituting terms for the free variables in a formula is always a
formula:

Lemma 3.25 Consider a formula F, a natural number k, pairwise distinct vari-

ables wy, w2, . ... wg and terms ul, 2, - - ., Ug. The word Fu, jw, upjwa....upjwy 1S
a formula.
Proof The proof is immediate by induction on F. |

Another kind of substitution, analogous to what we have already encountered
with the propositional calculus, consists in replacing, in a given formula of the
language, an occurrence of some sub-formula by some other formula. Without
going into the details of a precise definition, we are content to point out what is
essential: the result of these substitutions is always a first order formula.

More important, because they are more delicate, are substitutions that we will
call renaming a bound variable. This involves, specifically, the substitution into
a formula of a variable (and not an arbitrary term!) for some given variable at all
the occurrences of this variable that are in the scope of some given quantifier. For
example, in our formula

F =
Yvo(Iv1Vvg(Rvjvg = —vg >~ v3) A Yv2(Jva(Rviva V fug = ¢) A vy =~ 12)),
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we can rename the bound variable v, by substituting vs for all occurrences of v;
that are within the scope of the quantifier Vv,. This leads to the formula

F =

Yoo (dv1Vvo(Rvvg = —wo =~ v3) A Vus(3va(Rvjva V fvg = ¢) A vs = vs)).

In general, if, in a formula H, there is a sub-formula QvG, then changing the
name of the variable v to w in the scope of the quantifier Qv consists in simply
replacing the sub-formula QvG in H by the formula

QuwGyy.

So we see that the result obtained is necessarily a formula.

Remark 3.26 Renaming a bound variable is a procedure that deserves the great-
est care. We may be tempted to believe that this is merely an anodine transforma-
tion that preserves the ‘meaning’ that we will later be giving to formulas (in other
words, if we may anticipate, which transforms a formula into a logically equiv-
alent formula). However, this may be false if we do not take certain precautions
(we will see which ones at the appropriate time: Proposition 3.54 and Chapter 4).
For example, in the formula 3wYv v >~ w, changing the name of the variable v tc
w leads to the formula JwYw w >~ w which, we may suspect, will not have the
same meaning as the first.

We have not reserved any special notation for these name changes of bound
variables.

Before concluding this presentation of syntax, we will mention one more type
of substitution that is of a slightly different nature from the ones we have treated
so far but which is just as common. We will not dally over its definition nor on the
fact, important but easy to verify, that the result of these substitutions is always a
first order formula.

This involves starting from a formula J of the propositional calculus on an ar-
bitrary set P of propositional variables and substituting for each propositiona
variable, at each of its occurrences in J, a first order formula of the language
L. Here is an example involving the language L = {R, f, ¢} used above. Sup-
pose that A, B and C are propositional variables and consider the propositional
formula

J=J[A,B,C]=((AA B) = (=A Vv C))

and the following three formulas of the language L:

F = Vvg—Rv)vp;
G = (v] ~ ¢ = JvRv1 fv2);
H=-fc>c.
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Then by substituting the formulas F, G, and H respectively for the variables A,
B, and C in the propositional formula J, w e obtain the first order formula

((Vvo—Rvjvg A (v = ¢ = FpRv; f1y)) = (=Vyg—Rvvg V —fc 2 ¢))

which we may choosetodenote by J[F, G, H] if this does not create an ambiguity.

Remark 3.27 Every formula without quantifiers is obtained by a substitution of
the type justdescribed: it suffices to treat the set of atomic formulas of the language
as the propositional variables.

3.2 Structures

The word ‘structure’ is generally understood in mathematics to mean a set on which
a certain number of functions and relations (or internal operations) are defined
along with, upon occasion, what are habitually called ‘distinguished elements’.
For example, the ordered field of real numbers is the structure

(R, <,+.x,0, 1)

(sometimes, it is considered superfluous to specify the two identity elements so
these might be omitted); the additive group of integers is the structure (Z, +)
(or {Z, +,0)). The formulas that we have described in the previous section serve
to express properties of such structures. For this purpose, the language must be
adapted to the structure under consideration. Thus, we can easily guess that to speak
of the ordered field of real numbers, the language will require a binary relation
symbol R (intended to represent the order <), two binary function symbols f and
g (for the two operations + and x ), and, upon occasion, two constant symbols ¢
andd (for O and 1). In this situation, we would express the fact that 1 is an identity
element for multiplication by saying that the first order formula

Yvo(guod = vo N gdvg > Vo)
is satisfied in the given structure. As for the formula
JupYui1 (fvivg = vy A foguy 22 vy),
it is satisfied because there exists an identity element for addition. But the formula:
YogVvi (Rvgv; = Rvivg)

is not satisfied because the binary relation < on R is not symmetric.

What about the formula Rcvg? We realize that the question of whether this for-
mula is satisfied or not does not make sense in the absence of any specification
concerning the individual vg. However, it seems natural to say that Rcvg is sat-
isfied when the real represented by vg is m and that it is not satisfied when vg
denotes — 1.
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So w e see that the concept o f satisfaction of a formula will need to be defined
carefully and that the definition must take into account, in an essential way, the
presence or absence of free variables in the formula under consideration. Another
observation is forced upon us by these few examples: the syntax that we have
defined requires us to break some entrenched habits; if the act of representing
multiplication by some symbol other than x does not bother us much, the change
fromtheusual way of writing vg g v1 to writing guov| (so-called ‘prefix’ or ‘Polish’
notation) can be more disturbing. However, this Polish notation is necessary if we
wish tohave a uniform syntax, applicable in all situations and, in particular, to the
representation of functions whose arity is greater than 2. The other considerable
advantage of Polish notation is to free us from the use of parentheses which, with
the standard way of writing binary operations, we could not do without. The same
remark applies, to a lesser degree, to atomic formulas: we hardly ever write < vgv
instead of vy < v but the prefix notation is none the less encountered occasionally.

The purpose of all these remarks is to prepare the reader for a series of definitions
that are marked by the constraints of syntax. Following a path that is familiar to
mathematicians, once these definitionshave been given, we will immediately begin
committing all sorts of abuses, writing vg x v) and 1 < Oinstead of gvov; and Rdc
and, more generally, taking any measures that render a formula more intelligible,
at the risk of scandalizing those for whom rigour is sacrosanct. But we are not
there yet!

We will, in an initial phase, give a series of purely algebraic definitions and
properties that relate to structures, with syntax involved only incidentally (the
language will serve to make precise the type of structure under consideration
while the formulas will have no role to play in this first phase). After defining
structures, we will examine certain tools that allow us to compare them: sub-
structures, restrictions, homomorphisms, isomorphisms.

{t is only in Section 3.3 that we will approach the purely logical aspect of things
by presenting the notion of satisfaction of a formula in a structure.

3.2.1 Models of a language

Consider a first order language L that is not necessarily a language with equality.

Definition 3.28 A model of the language L, or L-structure, is a structure M
consisting of:

e a non-empty set M, called the domain or the base set or the underlying set of
the structure M;

e foreach constant symbol c of L, an element M of M called the interpretation
of the symbol ¢ in the model M;

e forevery natural number k > 1 and for every k-ary function symbol f of L, a

mapping 7M from M* into M (i.e. a k-ary operation on the set M) called the
interpretation of the symbol f in the model M,
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e for every natural number k > 1 and for every k-ary relation symbol R of L, a

subset EM of M¥ (i.e. a k-ary relation on the set M) called the interpretation
of the symbol R in the model M.

o In the case where L is a language with equality, we say that the model M
respects equality if =M the inter pretation in M of the equality symbol of L,
is the equality relation on M (i.e. is the set {(a, b) € M? : a = b}, also called
the diagonal of M?).

As we have already mentioned, only exceptionally (see Section 3.7) will we
deal with languages without equality. Thus, in the absence of any indication to the
contrary, ‘language’ and ‘model’ will always mean, respectively, ‘language with
equality’ and ‘model that respects equality’.

It is important to remember that the base set of a first order structure must be
non-empty.

In practice, models will be described in the following way: we will denote models
by calligraphic letters (usually M or A') and will usually use the corresponding
Latin letter to denote the underlying set; we will then provide the interpretations
of the various symbols for constants, functions and relations (preferably in the
same order that was used in the presentation of the language): this may range
from a simple enumeration (in circumstances where there are standard symbols or
names for these interpretations) to a more laboured definition. Thus, if the language
L = {R, f,c} involves a binary relation symbol R, a unary function symbol f and
a constant symbol ¢, it will suffice to write

N = (R, <, cos, )

to define the model of L in which the base set is the set of reals and in which the
interpretations of the symbols R, f and c are respectively the usual order relation,
the map x +— cos x, and the real number sz. On the other hand, we would need a
bit more space to define the L-structure

M= <M,ﬁM.7M,EM>

whose underlying set is the set of natural numbers that are not divisible by 5, and
in which

e the relation _.RTM is defined by the following: forevery a and b in M, (a, b) €
R if and only if gcd(a, b) = 3;

—M . . . .
e the map f~  1isthe one which, to each element a € M, associates the integer
a+ 104; and
o cMisthe first prime number which, written in base 10, requires at least a million

digits.

We emphasize that in this example, the language is one with equality and that
the model M respects equality since there was no mention to the contrary
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It is obviously essential to make a clear distinction between a symbol of the lan-
guage and its interpretations in various models; this explains the somewhat clumsy
notation s to denote the interpretation of the symbol s in the model M. Despite
this, we will omit mention of the model in contexts where there is no possible
confusion. It sometimes happens that it is the symbols denoting the relations and
operations of a particular structure that determine our choice of symbols of the
language appropriate for that structure. Thus, for the structure

N = (R, <, cos, 7).

we might choose the language { <, cos, 7 } where < is a binary relation symbol, cos
is a unary function symbol and 7 is a constant symbol. We will have understood
that the underlining is, in a way, the inverse of overlining (underlining represents
passing from the structure to the language, while overlining (or barring) represents
passing from the language to the structure). For example, cos’™™ = cos. This kind
of notation will be used in particular for arithmetic (in Chapter 6).

ln contexts where additional knowledge of the interpretations of the symbols for
constants, functions and relations is not necessary, we will speak of ‘an L-structure

M=(M,...).

3.2.2 Substructures and restrictions

How can we pass from a structure to another structure that is ‘larger’? There are
two rather natural ways to imagine this passage: either we enlarge the underlying
set and extend the given functions and relations in an appropriate way, keeping the
language unchanged; (in this case, the result is called an extension of the original
structure); or else, we keep the same underlying set and add new relations, new
functions or new constants to this set; we are consequently obliged simultaneously
toenrichthelanguage by adding a matchingcollection of new symbols toit. (In this
case, the resulting structure is called an expansion, or enrichment, of the original
structure.) It is unfortunate that the use of the two very similar words, ‘extension’
and ‘expansion’, can be the source of some confusion; it is vital to avoid this
confusion.

Definition 3.29 Given two L-structures M = (M, ...) and N = (N,...), M
is an extension of N and N is a substructure (or submodel) of M if and only if
the following conditions are satisfied:

e N isa subset of M;
e for every constant symbol c of L,

N _ M.

e foreverynatural number k > 1 and every k-ary function symbol f of L,

?N=7M I NK;
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e forevery natural number k > 1 and every k-ary relation symbol R of L,

B =FM ANk

Thus, for N to be a substructure of M, the requirement is that the interpreta-
tions in AV of the symbols of L be the restrictions to the subset N of their interpre-
tations in M. This has an important consequence for the constants and functions
of the structure M. On the one hand, if ¢ is a constant symbol, the element M

of M must belong to the subset NV (since N = ™). On the other hand, if fis
a k-ary function symbol of the language L, the restriction of the map ?M to the

subset N must be the map £~ , i.e. amap from N* into N. We conclude from this
that the subset N must be closed (or stable or invariant) under the k-ary operation

TM. In other words, given an L-structure M = (M,...) and a subset N C M,

the existence of an L-structure whose base setis N and which is a substructure of

M requires, first of all, that the set N is non-empty, and second, that N contains

all the interpretations in M of the constant symbols of L and is closed under all

the functions of the structure M. It is not difficult to verify that these conditions

are also sufficient; when they are satisfied, the substructure is obviously unique.
Let us examine, once again, the structure

N = (R, <, cos, 1)

that is a model of the language L = (R, f, c). This does not admit a substructure
whose underlying set is [—1, 1] because the interpretation of the constant symbol
c is r, which does not belong to this subset of R. Nor does it admit a substructure
whose underlying set is [0, 7r] since this subset of R is not closed under the cosine
function, which is the interpretation in A of the function symbol f. There is, on
the other hand, a substructure of A" whose underlying setis A = [—m, ]; itis the
substructure

A= (A,<,cos [ A, 7).

This constraint relating to functions has no counterpart for relations: if L is a
language with no symbols for constants nor for functions and if M = (M, ...)
is a model for this language, then for any non-empty subset N of M, there is one
(and only one) L-structure whose base set is N and which is a substructure of M:
itis the structure in which the interpretation of every relation symbol is obtained
by taking the trace on N of its interpretation in M (namely, for a symbol whose
arity is k, its intersection with N ky.

In general, although there may not be a substructure of a given structure whose
underlying set is some given subset NV, there is, none the less, a substructure that is
minimal, in a certain sense, whose underlying set includes the given subset NV: this
is called the substructure generated by N. This concept is described in detail in
Exercise 3.12.
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Let us now turn to expansions (or enrichments) of structures (and hence of
languages).

Definition 3.30 Let L and L’ be two first order languages such that L < L'
(we say, in this case, that L is an expansion or enrichment of L and that L is a
restriction of L'). Let M be an L-structure and M’ be an L'-structure. M’ is an
enrichment (or expansion) of M and M is a restriction of M’ if and only if M
and M’ have the same underlying set and each symbol for a constant, a function
or a relation of the language L has the same interpretation in the L-structure M
as in the L'-structure M'.

Very simply, this means that M’ is an enrichment of M if and only if M’
is obtained from the L-structure M by adding to it the interpretations of those
symbols for constants, functions or relations of the language L’ that were not
alrcady present in the language L.

We also say that M is the reduction (or reduct) of M’ to the language L.

For example, where L is the language { R, f, c} and where L is the language
{R}, the L-structure

N = (R, <,cos, 7)
is an enrichment (or expansion) o f the Lo-structure
(R, <).

3.2.3 Homomorphisms and isomorphisms

A single language L is under consideration here. Let M = (M,...) and N =
(N, ...)betwo L-structures and let ¢ be a map from M into N.

Definition 3.31 The map ¢ is a homomorphism of L-structures from M into N
If and only if the following conditions are satisfied:

e for every constant symbol c of L,
$e™y =2

e for every natural number n > 1, for every n-ary function symbol f of L and
for all elements a), ay, ..., a, belonging to M,

s(F M  @ran, ..., a0) = T @@), $@), . .., d@n):;

e for every natural number k > 1, for every k-ary relation symbol R of L and for
all elements a\, ay, ..., a, belonging to M,

i @1, a0 ) ER,  then (#(a1), d(@2), ... . dla)) e .
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Thus, a homomorphism from one L-structure into another is a map from the
base set of the first into the base set of the second which ‘respects’ all the relations,
functions and constants of these structures.

Definition 3.32 A monomorphism of L-structures from M into N is a homo-
morphism from M into N' which has the following property:

for every natural number k > 1, forevery k-ary relation symbol R of L
(+) and forall elements ay, ay, ..., ar belonging to M,

(a1, az,....ax) € R if and only if (¢(a1), d(@), ... d(ax)) € R .

As our definition of monomorphism, we could just as well taken Definition 3.31
and replaced its third clause by condition (x) above.

Lemma 3.33 Every monomorphism is injective.

Proof We must remember here that we are only considering languages with
equality and models that respect equality. If ¢ is a monomorphism from M into
N, property (x) applied to the equality symbol =~ shows that for all elements a and
b of M, we have

(a, b) € =M if and only if (¢(a), p(b)) € =V,

which is to say that a = b if and only if ¢(a) = ¢ (b). ]

Lemma 3.34 Let N = (N, ...) be an L-structure and let N\ be a subset of N;
for the existence of a substructure of N' whose underlying setis N)_ itis necessary

and sufficient that there exists an L-structure M = (M, . ..) and a monomorphism
¢ from M into N such that the subset N is the image of ¢.

Proof First, suppose that there is a substructure N} of A" whose base setis Nj.
Then Definitions 3.29 and 3.32 clearly show that the identity map from N; into
N1 is a monomorphism from A into A" whose image is Nj.

Conversely, suppose there exists an L-structure M = (M, ... ) and a monomor-
phism ¢ from M into A" whose image is N|. Then for every constant symbol ¢
of L, we have cV = ¢ (@), hence Ve Ni; similarly, for every k-ary function

symbol f of L (k > 1) and for all elements ay, a2, ..., g belonging to N1, we
can find elements by, by, ..., bk of M such that ¢(b;) = a; for1 <i < k, so we
then have

N aras. ....an) = 6(F Brba. ... ba)),

which proves that TN(al,az_ ..., Qay) belongs to Nj. We may now conclude, based
on the paragraphs that followed Definition 3.29, that there exists a substructure of
N whose base setis N|. L

Definition 3.35 Anisomorphism from an L-structure M ontoanother L-structure
N is a monomorphism from M into N that is surjective.
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An automorphism of an L-structure M is an isomorphism from M onto M.

Itis clear that if a bijective map ¢ : M — N is an isomorphism of the structure
M onto the structure NV, then the inverse map ¢ ! : N — M is an isomorphism
of A/ onto M. If there is an isomorphism between two structures, they are said to
be isomorphic.

Remark 3.36 [z follows from Lemma 3.34 that any monomorphism from a struc-
ture M = (M. ...) into a structure N = (N, ...) may be considered as an
isomorphism of M onto a substructure of N .

Example 3.37 (in which the details are left to the reader)

e Where the language consists of one constant symbol ¢ and one binary function
symbolg,thestructures{ﬂ%j_, 1, x)and (R, 0, +) areisomorphic; themapx ——
In x from R into R is witness to this fact.

e With this same language, the map n —— (—1)" is a homomorphism from the
structure (Z, 0, +) into the structure ({—1, 1}, 1, x).

e I[n the language whose only symbol is the binary relation symbol R, the struc-
tures (R, <) and ((0, 1), <) are isomorphic thanks to the map
1

X — — 4+ —arctanx
m

from R into (0, 1).

However, the identity map from (0, 1) into R is only a monomorphism.
Thereader will have noted the abuse of language that consists in using the same
symbol to denote the order relation in R and the one in (0, 1).

e With this same language, consider the structures M = ({0, 1}, =) and N =
({0, 1}, <). The identity map from {0, 1} into {0, 1} is obviously bi jective and is
a homomorphism from M into AV, but it is not an isomorphism. This shows that
we cannot replace ‘monomorphism’ by ‘homomorphism’ in Definition 3.33.

3.3 Satisfaction of formulas in structures
3.3.1 Interpretation in a structure of the terms

We have already mentioned that the terms of a language will serve to denote
objects. Suppose that the language involves a constant symbol ¢ and two function
symbols f and g that are unary and binary, respectively. We suspect that in a
structure M = (M, ¢, f,g), the term f fc will be interpreted by f(f(¢)), which
is an element of M, and the term gfcgcc by the element 2(f(c), g(c,©)). Butto
interpret the term fvg, we first need to know what element is denoted by vg. Now,
we will not be giving fixed interpretations in a structure for the variables (otherwise,
we wouldn’t have called them variables). To be more precise, the interpretation in
a structure of a symbol for a variable can vary. This leads us to the fact that the
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interpretation of the term fvo will depend on the interpretation given to vg. Thus
for any element a of M, we will say, when the interpretation of vg is a, that the
interpretation of the term fvp in M is the element 7(a). It is obvious that, when
the interpretation of vy is g, the term fv4 will have this same interpretation. As
for the term g f guvacvi, it will be interpreted, when v; is interpreted by a and v;
by b, by the element

g(f(g(b,0)), a).

Definition 3.38 Let n be a natural number; let wo, wy, ..., w,—) be n pairwise
distinct variables, let t = t{wo, wy, ..., w,—1] be a term of the language L, let
M = (M,...)bean L-structure and let ao, ay, . . ., an-1 be n elements of M ; the
interpretation of the term t in the L-structure M when the variables wo, wy, .. .,
wy_] are interpreted respectively by the elements ao, a|, ..., an—1 is an element
of M; it is denoted by

fM[wo —>ao,w| —> A, ..., Wn—1 = Ap_1]
and is defined by induction on t as follows:
o ft=w; (0<j<n-1),
?M[wo — ap, W) = Al,..., Wp—1 = Qp—1] = aQj;

e Ift = c (a constant symbol of L),

“M _
t” [wo — ao, wl_>al,...,wn—l_>an—l]=CM;

o ift = fymn...t, (where k € N*, f is a k-ary function symbol of L and
t,t2,..., 4 aretermsof L),

?M[wO - a07 w] —> al’ e oy wl’l—l - al’l—l] ==
7@ [wo = ao, ..., Wn—1 —> an—1],
—M
12" [wo — ao, ..., Wn—1 = ap-1l,
—M
S [wo — ao, w1 — aj...., Wp—] = an-1)).
Inpractice, we will denote the element EM[wo —> ao, ..., Wn-] = ap—j] more
simply by

-M
t” laog,ai, ...an—1]

despite the fact that this notation is ambiguous: indeed, it contains no reference
to a specific sequence of free variables (including those that have one or more
occurrences in t); there are, in fact, an infinite number of such sequences which
differ from one another either by containing extra variables (that do not occur in t)
or by the orderin which these variables are listed. Were it not for this ambiguity, it
would have been practical to define, as is sometimes done, the interpretation of ¢
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in the structure M as a map from M" into M, i.e. the map that, to each n-tuple
(ao, a1, ..., a,_1), assigns the element

-M
t” [wo —> ag, w; = al, ..., Wn—1 —> An—11J-

None the less, this simplified notation will prevail in most concrete situations
in which the context removes all ambiguity. For example, in the language under
consideration at the beginning of this subsection, if ¢ is the term gvy fvy and M
is the structure (R, O, cos, +), everyone will understand that for all reals a and
b, ?M[a, b] denotes the real a + cos b (however, the situation would already be
less clear if the term had been gv; fvo: it would be prudent in this instance to
be precise, for example, by specifying ¢t = t[vo, v;] or by relying on the official
notation).

Remark 3.39 In the preceding definition, it is clear that the order in which the
interpretations of the variables are specified is immaterial: precisely, for any per-

metation o of the set (0,1, ...,n — 1}, we have
-M
t” [wo — ag,-.., Wn-1 = an-1]
-M
=1 [we©) > 4o ), ---» Wan—1) = da(n—1)]-

Strictly speaking, this would require a proof by induction on ¢, but it is obvious.

The purpose of the lemma that follows is to show that the interpretation of a
term in a structure does not depend on the values assigned to variables that do not
occur in it.

Lemma 3.40 Let m and n be two natural numbers, let wo, wy, ..., wWy—1, 20,
215 --.,2Zm—1 be m + n pairwise distinct variables and let t be a term of L whose
variables are among wg, Wi, ..., wy—1 (while 20, 21, ..., 2m—1 do not occurint)
so that it makes sense to write

t = tlwo, wi, ..., Wp—1] = t{wo, Wi, -+ Wn=1, 20, 21y -« » Zn—11;

then for any L-structure M = (M, ...) and for any elements ao, ai, --.,an—1-
bo, b1, ..., bu—1 of M, we have

M
t” [wo = ao, wy —> ay, ..., Wn—1 = ap-1]
-M
=t [wo—->aog,...,Wn—1 = an-1,20 > bo, ..., 2Zm—-1 => by—1].
Proof The proof is immediate by induction on ¢. ]

We will now examine the effect of a substitution in a term on its interpretation.

Proposition 3.41 Letn be a natural number and let v, wo, wy, ..., wy—1ben+1
pairwise distinctvariables; considertwo termsof L, t = t[wo, wy, ..., wWy,—1] and
u = ulv, wg, wi, ..., Wn—1)andletrdenotethetermu(t, wo, wy, ..., wn—1], i.e.

r is the term ug ty.
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Then for any L-structure M = (M, ... ) and for any elements ao, a\, ..., An-1
of M, we have
Mwo > ao, wy > @i, ..., wp 1 = ay_1)
— -M
= uM[v —> 1t [wo— ag,...,Wn-| = An-1], W — A0y --.+ Wp—] —> an-—l]-
Proof Note first of all that the variables that occur in r are among wo, vy, ...,
w,, _1, so that the term on the left side of the equality makes sense. The equality is

proved by induction on the term u;

e ifuisaconstantsymbolcof L, we have r = u = c and each side ofthe equality

denotes the element EM;

e ifuisthevariablew; (0 <i <n—1),r = u = w; and each side of the equality
denotes the element ag;;

e if u is the variable v, we have r = ¢ and each side of the equality denotes the
element?M [wo — ao, W — Al ..., Wyl —> An—1];

e ifu = fujuz ---u; (where k € N*, f is a k-ary function symbol of L and
ui, U2, ..., u, are terms of L), then by setting r| = Ul 72 = U2;pp5 « - -
Yk = Uk, WE have

r= frirg---rg;

the induction hypothesis is that for i € {1, 2, ..., k},

r_iM[WO -> a0, W] > Al, ..., Wy—| > ap_1] =

_.._M[v

.._M ]
Ui < [ [wO -> A4g, .-, Wp—| —> an—[]a Wwo —> A4, ..., Wp—1 -2 AQn- l]a

so we see, by referring to the definition above, that

Mwo — ag, w1 = ai, ..., wy—1 —> ap1] =
EM[U > EM[wO ->AaQ, .- Wy_1 > An_1], wo -~ aop. ..., Wp_1 > an_l].

3.3.2 Satisfaction of the formulas in a structure

We are given a language L, an L-structure M = (M, ...), a natural number n,
n pairwise distinct variables wg, wy, ..., w,—, n €lements ag, ay, ..., a,- of M
and a formula

F = Flwg, wi, ..., wy—1] € F(L).
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The definition that follows, which will be given by induction on the formula F,
will give meaning to the following phrase:

‘the formula F is satisfied in the structure /M when the variables wg, Wi, - . -« Wn—1
are interpreted respectively by the elementsag. @1, - .., @, -1

The notation for this property will be
(M :wp—> ag, w; = al, ..., wn—1 > an-1) = F

(the symbol = is read ‘satisfies’).

In practice, as with the interpretation of terms, we will most often resorttoa way
of speaking and a notation that are less cumbersome, but not without ambiguity.
We will write

M }: F[00$a]s ---san—l]

and will say

M satisfies F of ag, ay, -..,an—1;

or

the n-tuple (or the sequence) (aop, ay, ..., a,_1) satisfies the formula F in M;

or
the formula F is satisfied in M by the n-tuple (ao, ai, - - - @n—1 );
or
the n-tuple (ao, ay, - .., an—1) satisfies the formula F[wg, wy, ..., wy_1] in M,

The last of these formulations is intended to recall our understanding that wo,
wi, ..., w,—] aretobe interpreted respectively by ag, ai, . . ., a,—1; the first three
formulations ignore this. The ambiguity here is analogous to the one mentioned
previously concerning terms: the choice of some fixed ordered list of variables
that includes the free variables of F is left unspecified. But, just as for terms, the
context will most often make things clear.

For the moment, the reader is invited to interpret the notation

ME Flag, ai,...,an-1]

as mere shorthand; one should not consider that F[ag,ai, ...,an—1] denotes a
formula. In fact, none of what has preceded would authorize this. None the less,
such a point of view will be possible a bit later; we will atthatpointhavethe means
to justify it (Theorem 3.86).
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Thenegationof ‘(M : wg — ag,w| — ai, ..., Wy—; = a,—1) &= F’iswritten
(M :wg— ag, w) > ay,y ..., Wp—} = Ap—1) F F
or again, using the simplified notation
ME Flag,ay,...,an—1].

Here is the promised definition.

Definition 3.42
o 1 If F isthe atomic formula Rt\t7 - - - tp where k is a natural number greater
than or equal to I, R is a k-ary relation symbol of L and t)_ 12, ..., tk are

terms of L (such that for each i € (1,2, ...k}, i = t;[wo, w1, ..., Wa—1]),

we have(M : wg — ag, w) — ai, ..., wy—_1 — an—1) E F if and only if

(TI_M[wO - aO’---swl’l—l - an__]],...,EM[wO - aOs""wn—l -
—M

al’l—]]) € R ;

(in particulay; if L is a language with equality and if M is a model that respects

equality, we have

(M :wg— ag, wy = ai, ..., Wn-1 = an—1) =t =12 if and only if

1 Mwo > ag, ..., w1 = an1l =5 wo —> ag, ..., Wet = an—1l
o 2LIfF =-G:
(M :wy —> ag, wy = aj,...,Wn—1 = an—1) = F ifand only if

(M :wg — ag, w) > ay, ..., Wy—] —> an—1) ¥ G.
e 3. IfF = (G A H):
(M :wg — ag, wy — aip,...,Wp—1 —> an—1) = F ifand only if
(M :wg > ag,w; = ay, ..., w,—; —> an—1) = G and
(M :wg — ag, wy > ajy, ..., Wn—1 —> an—1) F H.
e 4. IfF=(GvVv H):

(M :wo— ag, w; = ai, ... . Wy_.1 —> an—1) = F ifand only if
(M :wo— ag, w1 —>ail,...,wy—1 > ay_1) =G or
(M:wp— ag,w) = al,..., Wsp—1 = an—1) = H.

e 5.IfF = (G = H):
(M :wg —> ag,wy —> ai,...,Wn—1 —> an—y) = F if and only if
(M :uwg > ag,w; = ayl, ..., Wn_| —> apn—1) ¥ Gor
(M :wg —> ag,wy —> at, ..., Wy .| = an—1) = H.

e 6.IfF =(G & H):
(M :wog— ag, w; = ai, ..., wy—1 = ap--1) = F ifand only if
(M :wg —> ag,wy > Aty ..., Wp—t —> an—1) = G and
(M :wop—ag,w) —>ay, ..., Wy—i = an—1) = H;
or else
(M :wp — ag, W) = ai, ..., Wu—1 — an—1) ¥ G and
(M :wg —> ag,w| —> at, ..., Wy—1 — Qn-1) F H.
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e 7. IfF =VYuG (wherev €YV — {wo, Wi, ..., Ws-1]}):
(M :wo— ag, w1 = ajy,...,wp_1 = an—1) E F if and only if for every
elementa € M,
(M:v—>a,wg = aqp, W] > al,...,Wp—1 = an—1) = G.
e 8. If F = 3vG (where v € V — {wo, wi, .., W1}
(M :wg — ag, w) — ay, ..., Wu—1 = an—1) = F if and only if for at least
one elementa € M,
(M :v— a,wg = ap, W —> at,-.-.Wu_1 = an—1) &= G.
o 0. ) F =Vw;G (where0 <i <n-—1),
(M:wo— ao, w) > aj,..., Wp—1 —> an—1) & F if and only if for every
elementa € M,
(M :wo — ao, Wi—1 —> @j—1, W; = a, W] —> Qi+], Wp—-1 = an—1) = G.
o 10. If F =3w;G (Where0 <i <n —1),
(M :wg — ap, w) —> ajy, ..., Wy—1 = an—1) = F if and only if for at least
one element a € M,
(M :wo —> ag, Wi—] = ai—1, Wi —> a, Wit] —> Qj+1, Wy—1 —> an—1) E G.

For a correct reading of this definition, it is appropriate to recall that in clauses
2, 3,4, 5, and 6, the free variables of the formula G as well as those of H are

among wg, Wi, ..., Wy—1; in clauses 7 and &, the free variables of G are among
v, wo, Wi, ..., wy—1; and finally in clauses 9 and 10, the free variables of G are
among wo, W;—1, W;+1, Wy—] (the variable w; is no longer free in F, though this
in no way prevents us from considering that F = F[wg, wi, ..., w,-1]).

This definition notably applies to the case when the formula F' is closed. In this
context the property becomes

MEF
which is read: ‘M satisfies F’. When this property is satisfied, we also say that F
is true in M, or also that M is a model of F.

Remark 3.43 The definition of satisfaction does not dependonthe order in which
the inter pretations of the variables are specified. This means that for any permu-

tation o of the set {0, 1, ..., n — 1}, we have
(M :wg-»ag, wy —ay,...,wy—1 = a,-1) E Fifandonly if
{M D Wa(0) = Aa(0), Wo(l) = Ao(l)s -« -» Wa(n—1) —> ag(n_1)> = F.

The proof is obvious: the argument is by induction on F'; the case for atomic
formulas is governed by Remark 3.39; the rest goes without saying.

We have observed that the list of variables that includes the free variables of a
given formula can be artificially lengthened (by adding to this list variables that
have no free occurrence in the formula). It is natural to ask whether this can have
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any effect on the notion of satisfaction that has just been defined. The answer, in
the negative, is given by the next lemma.

Lemma 3.44 Let m and n be two natural numbers, let wg, wy, ..., Wy—y, 20, 21,

. .» Zm—1 be m + n pairwise distinct variables and let F be a formula of L whose
free variables are among wo, wi, ..., wy,—1 (While zo, 21, ..., Zm—1 have no free
occurrence in F') so that it makes sense to write

F= F[wOaw]a---awl‘l—Ile[wOa wl,---awn—l,ZOale---,Zm—I]-

Then for any L-structure M = (M, .. .) and for any elements ao, ai, - .. Gn—1,
bo, b1, ..., bm—1 of M, the following properties are equivalent:

(l) <M - wo —> ap, w1 —> Aajs ..., Wp-| — al‘l—l) |= F
(2) (M :wo—aq, ..., Wy-1—>an—1,20—b0s - . » Zm—1—>bm—_1) E F

Proof The proof is, of course, by induction on F.

e If Fis the atomic formula R#¢7. ..tk where k 1s a natural number greater than
orequal to 1, R is a k-ary relation symbol of L and ¢ 12, ..., t are terms of L,

then, by hypothesis, for each i € {1,2,...,k}, we are free to write one or the
other of
tl — tl[wOs wla ORORON) wn—l] Orti - tl[w()) wi,..., wl‘l—la ZO) Z|9 c v Zm—}]

S owe may conclude, using Lemma 3.40, that

— M
li [wO—)aOa W) > Adl, ---5 Wp—| —‘>an—l]
—M
= tl [wO — a09 s ey wl‘l—l — an—l, ZO - b0s oo ,Zm—l — bm—l],
which, by the definition of satisfaction (Clause 1), yieldstheequivalence between
(1) and (2).

e For those stages of the induction that refer to the symbols for connectives, the
proof is obvious.

e It is also obvious for the cases where F = YvG or F = JvG when the variable

v does not belong to {20, Z1, - - - » Zm—1}-
o If F =Vz,G where h € {0, 1, ..., m - 1}, then the free variables of G are
among z; wo, Wi, ..., Wx—|. Property (1) is verified if and only if for every

element b of M,
(M :zp > b, wg — ag, w1 — aj,---,Wn—1 —> an—1) = G,

which is equivalent, by the induction hypothesis and Remark 3.43, to: for all
beM,

<M:w0_)00a---awn—l — anp--1,20 — bo, -- -,

oy Zh—t > b,z = byzprr = bty .-, Zm—1 = b)) E G,
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but this means, by definition (Clause 9):

(M :wg—ag,...,Wy—1 => ay—1,z0— bo, ...,
ey Zh=t => br—1, 20 = bp, Zn+1 = bptr, - - Zm—1 > bm—1) E YULG,
which is precisely property (2).
e The case F = JvyG where h € {0, 1, ..., m — 1} is treated analogously. ®

Here is a very useful consequence of the definition of satisfaction; it concerns
substitutions into formulas.

Proposition 3.45 Suppose n and p are natural numbers, v, wg, wy, ..., Wn-1,
Uo» Ul, - - -, U p—) aren+ p+1 pairwise distinct variables, t = t[wo, wi, ..., wWy—]
isatermof L and F = Flv, wo, w1, ..., Wp—1,u0,U\,...,up_1]isa formula

of L. Suppose further that in the formula F, there is no free occurrence of v in the
scope of any quantification Vw; or Jw; (0 <i <n —1).

Then for any L-structure M = (M, . ..) and for any elements ag, a1, . .., an -1,
bo, b1, ..., bp_1 of M, the following two properties are equivalent:

(1) (M :wo—>ag,....Wp—| — an—1.uo —> by, ceesUp—] ™ bp-—l) = Ff/v;

2) (M :v = ™Mwo = a0, w1 = ai,..., w1 = an_1], wo — ao,
W = Al ..., Wl = Qn—1, ug — bo, uy = by, ..., up_| = bp_y)
k= F.

Proof Note first of all that the free variables of the formula F;/, are among wo,

Wi, ..., Wy-1, U, U1, . - ., Up—1, Which shows that property (1) makes sense. The
proof proceeds by induction on F'.

e If F isthe atomic formula Rt 1 ...ty where k is a natural number greater than

or equal to 1, R is a k-ary relation symbol of L and ¢;_ 2, ..., t are terms of
L, then, foreachi € {l, 2, ..., k}, we may write
ti = ti[v, wo, Wy, ... Wy—, UQ, UL, ... Up—1]

and, according to Clause 1 in the definition of satisfaction, if we set
rj =, property (1) means

(71_M[w0 => A0, ..., Wp—] —> An—1,Uu0 —> bo, ..., up_1 = bp_1], ...
-J’?{M[wo — aQ, ..., Wp—1 —=> aAp—-1,u0 —> by, ..., up_| — bp_l])
EﬁM;
now, by virtue of Proposition 3.41, if foreachi € {1, 2, ..., k} we set
M —
bi =t [v —> tM[wo — ag, ..., Wp—1 = an—1], Wo = Ao, - ..

ceesWp—] = An—1, uo —> by, ..., up-1 = bp—l]],
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this becomes equivalent to

(b1 by, ..., by) e R,

i.e. (by Clause 1 of the definition) to the following assertion, which is prop-
erty (2):

-M
(M:v—>t [wog = ag, wi = aip, ..., Wnp—1 = am—11, wo — ao,
W) = al, ..., W] = Gn-1, U0 —> bo, 1 = b1, ..., up1 = bp_i)
= F.

e Thestagesofthe induction that concern the symbols for connectives areobvious.

e Suppose F' is the formula 3zG; the free variables of G are among z, v, wo,
Wi, ..., Wy_1, U0, U1, ..., up—y. If zis one of the w;, then by hypothesis v has
no freeoccurrence in G, norin F; i1fz = v, v has no free occurrence in ¥'; in both
these cases, F;/, = F; the equivalence of (1) and (2) is then a straightforward
consequence of the previous lemma. If z is different from v and from all the w;
(0 <i < n—1), then we have F;;, = 32G,,y; in the case where z differs as
well from all the u; (0 < j < p — 1) then z is not among the variables of ¢ so
property (1) is equivalent to the existence of an elementa € M such that

(M . Z — a, w0_> ao,...,wn_] —> An-1, U0 —> bO’...,up_] —> bp_l)
= Gr/v§
by the induction hypothesis, thisis also equivalent to the existence o fan element
a € M such that

-M
{M:v—>t [wog — ao, ..., Wy—1 = an-1l,2 = a, wg — aop, - - .

s Wn—] => An_1,u0 = bo, ..., up—1 = bp_1) E G,
or, in other words, to the following assertion which is precisely property (2):

-M
(M:v—>t [w0—>a0,w1 —>A]ly..., Wy—| —>an_1],wo—>a0,...

cees Wp—] = ap—1,u0 —> by, ..., up—1 > bp_l) = 3zG.

In the case where z = u; (0 < j < p — 1), it suffices to repeat the five previous
lines omitting ‘u; — b;’ from the assignments for the variables.

e The case involving universal quantification is similar. ]

In this proposition, the hypotheses that concern the variables are rather com-
plicated. Most of the time, we will have stronger (and simpler) hypotheses at our
disposition: this is the case, for example, when none of the variables wo, wy, .. .,
w;,—1 has a bound occurrence in the formula F.

Consider once again the language L = (R, f, c} used earlier as well as the
L-structure N = (R, <, 7, cos) . Here is an assortment of examples of a formula
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F[vg]) of L along with the set of reals a such that N |= F[a] (which is, we should
recall, another way to write (N : vo — a) = F).

Rcvo [, +00)
Jvi fu] = vg [—1, 1]
Jv) fvg >~ vy R
fvy=c Y
Jvi(Rcvg A fu] = vg) A

Ju; (Rcv; A fu] 2 vg) [—1,1]
Vv Rvg f v (—o0, —1]
YuiRfvg ful {2k + 1) 1 k € 7)
Yy3va2(Rvjvy A fup >~ vg) [—1,1]
Yvodv, fv] = vg )
Jv1VuoR fuou) R

The reader will have noticed that the last two illustrative formulas are closed. The
last one is satisfied in A" while the next-to-last is not. Listing these two formulas in
the category of formulas with onefreevariable may appear preposterous, especially
after encountering the fastidious verifications to which we are led by the definition
we have adopted. It would seem much more natural to be satisfied by associating
witheachformujathelist of variablesthatactuallyhaveat least one free occurrence
in it. This is, by the way, what happens spontaneously in practice: when we are
interested in the sequences of elements that satisfy the formula (YvoRvoc =
(—Rv;v, Vv Rvy fu3)) ina given structure, we obviously tend to think of sequences
of length 3. What justifies the more expansive definition that we have adopted
in spite of this is, essentially, the fact that the subformulas of a formula do not
necessarily involve all the free variables of the formula (and may even involve
others which become bound in the whole formula); thus, to proceed otherwise
would have led us to define the notion of satisfaction with a much more complicated
induction. We realize that all these considerations are (merely) technical and that
it is not necessary to pay undue attention to the purely formal subtleties that we
might easily raise concerning this definition.

The essential notion to retain from all the preceding is that of the satisfaction of
a closed formula in a structure.

3.4 Universal equivalence and semantic consequence

In this section, we will provide definitions and a basic vocabulary that are of
constant use in model theory.
We are given a first order language (with or without equality).

Definition 3.46

e A closed formula of L is called universally valid if and only if it is satisfied
in every L-structure. Instead of ‘universally valid formula’ we sometimes say
‘valid formula’.
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The notation for: ‘F is universally valid’ is

F* F

?

while ¥* F stands for: ‘F is not universally valid'.

e A closed formula of L is called a contradiction (or is said to be contradictory
or inconsistent) if and only if its negation is universally valid.

e A formula with free variables is universally valid if and only if its universal
closure is universally valid (see Remark 3.47 below).

o Given two formulas F and G of L (whether closed or not), we say that F is
universally equivalent (or logically equivalent, or simply equivalent) to G if
and only if the formula (F < G) is universally valid.

The notation for ‘F is universally equivalent to G’ is

F~G

o A setof closed formulas of L is called a theory of L.

e Given a theory T and an L-structure M, we say that M is a model of T (or
that M satisfies T, or that T is satisfied in M) if and only if M satisfies each
formula that belongs to T .

The notation for ‘M isa model of T’ is

MET,

while M B T stands for : ‘M is not a model of T .

e A theory is consistent (or non-contradictory, or satisfiable) if it has at least
one model.

A theory that is not consistent is called contradictory (or inconsistent).

o A theory is finitely consistent (or finitely satisfiable) if all its finite subsets are
consistent.

e Given a theory T and a closed formula F of L, F is a semantic consequence
of T (or simply, a consequence of T) if and only if every L-structure that is a
model of T is also a model of F.

The notation for ‘F is a consequence of T is

T H* F,

while T ¥* F stands for ‘F is not a consequence of T".

e IfT isatheoryand F is aformula of L withfree variables, F is a consequence
of T if and only if the universal closure of F is a consequence of T . T he notation
is the same as for closed formulas.

e Two theories T\ and T, are equivalent if and only if every formula in T\ is a
consequence of T2 and every formula in T, is a consequence of T.
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Remark 3.47 The definition that is given here for the universal validity of a for-
mula with free variables is, a priori, incorrect. It only makes sense once it has been
verified that the various universal closures of a formula are all universally equiv-
alent. This fact, which is intuitively clear; is proved by referring to the definition
of satisfaction (3.42). We will have to deal later with more or less this same issue
to prove property (5) of Theorem 3.55.

Remark 3.48 We must be wary of the concept of universally equivalent formulas
as it applies to formulas that are not closed: for two formulas to be equivalent, it
is not sufficient that their universal closures be equivalent. Consider, for example,
the following two formulas in the language whose only symbol is equality:

F=—-vy=>~v; and G = vy =y

Their universal closures are, respectively:

F1 =VYyVvi—vg~v; and G| = VygVur—ug > vs.

The formulas F\ and G| are universally equivalent: indeed, they areboth con-
tradictory, for if we take an arbitrary structure M and an element a from its
underlying set (necessarily non-empty), we have (M : vo — a,v; — a) E F
and (M : vg — a, vy — a) ¥ G, which shows that M satisfies neither F| nor
G 1, and hence does satisfy (F1 < G1). However, the formula (F & G) is not
universally valid, for its universal closure,

YvoVviVva(—vg >~ v & —vg >~ v2),
is not satisfied in the structure whose base set is {0, 1}; to see this, note that
(M:vg—=0,vy = 1,v, — 0) E Fand{M :vg = 0, vy — 1,v; - 0) £ G.
It follows that

(M:vyg— 0,vy = 1,y = 0) ¥ (g @ v) © —ug 2= vy).

So the universal closure of this last formula is false in the structure under consid-
eration.

What is true, none the less, is that if two forrnulas are universally equivalent,
then so are their universal closures (see Exercise 6).

It is time to indicate precisely which abuses of notation we will allow ourselves
concerning first order formulas. In fact, we will be satisfied simply torecycle those
that we have already decided to use for formulas of the propositional calculus:

e suppressing the outermost pair of parentheses;
e writing (F A G A H) instead of ((F A G) A H);

e using ‘large’ conjunctions and disjunctions such as A F;.
iel
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The justification for using these shorthand notations is essentially the same as it
was for the propositional calculus. Their transfer to first order formulas is based
on the following very simple and constantly used result:

Lemma 3.49 LetA), Ay, ..., Axbepropositionalvariables, letJ[A| A2, ..., Al
be a propositional formula and let F\,F,,.. ., Fy be first order formulas of a
language L. If the formula J is a tautology, then the first order formula

JIF1, Fo, ..., Fi] (the result of substituting the formulas F\, F,, ..., Fx for
the variables A\, A,, ..., Ak, respectively, in the formula J) is a universally valid
formula.

Proof Suppose that the free variables of the formulas Fj, F3, ..., Fx are among
V0, V1, . . ., Up—1. Then this is also the case forthe formula F = J[Fi F7, ..., Fk].
Consider an L-structure M = (M. ...) and elements ag. af, ..., apn—1 of M.
We define an assignment of truth values § on {A}, A,, ..., Ay} by setting, for
0<i<k:

scay— |1 TMI= Filao.ay, ... ani]
l 0 ifM%E‘[ao,al,.,,,an_l].

Here we have used the simplified notation for satisfaction. The definition of
satisfaction shows clearly (argue by induction on J) that the formula F' is satisfied
in M by the n-tuple (ao, ay, ..., an—1) if and only if the assignment of truth values
8 assigns the value 1 to the formula J. We conclude immediately that when J is a
tautology,

M E Flao, ai, -..,an-11,

and that this holds for any n-tuple (ag, ay, .. ., a,—1), which proves that the uni-
versal closure of F' is satisfied in any L-structure, i.e. that F is universally valid.
a

Definition 3.50 The universally valid formulas that are obtained from proposi-
tional tautologies by the method we have just described are called tautologies of
the predicate calculus.

So we see that everything that was said in Chapter 1 concerning tautologies
(associativity of conjunction and disjunction, among other facts) transfers with-
out difficulty to first order formulas; the concepts of tautology and of equivalent
formulas become, respectively, those of universally valid formula and universally
equivalent formulas.

Note finally that we adopt no particular abbreviations involving the quantifiers.

The properties asserted in the following theorem are immediate consequences
of the definitions given above.
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Theorem 3.51 Forany theories T and S of L, any integers m and p > 1, and any
closed formulas G, H, F\ F>, ..., Fm, and G, G2, ..., Gp of L, the following
properties are satisfied:

The formula G is contradictory if and only if no L-structure satis fies it.

The formula G is a consequence of T if and only if the theory T U {—G} is
contradictory.

If T is consistent and if S C T, then S is consistent.

If T is consistent, then T is finitely consistent.

If T is contradictory and if T C S, then S is contradictory.
YTH*GandifT C S, then S H* G.

T U{G}W* H ifandonly ifT +-* (G = H).

TH*(GANH)ifandonly if T \-* Gand T +-* H.

(Fi, Fay..., Fm) F* G ifand only if t-* (Fy AN F2 A - -+ A F) = G).

G is universally valid if and only if G is a consequence of the empty theory.
G is universally valid if and only if G is a consequence of every theoiryof L.
T is contradictory ifandonly if T }-* (G A =G).

T is contradictory if and only if every formula of L is a consequence of T .

T is contradictory if and only if for every universally valid formula F, —F is a
consequence of T.

T iscontradictory ifandonly if there exists at least one universally valid formula
F such that -~F is a consequence of T.

The theory (Fy, F2, ..., Fu} is contradictory if and only if the formula
(—F)V —F2 V.-V =Fy) is universally valid.

The theories T and S are equivalent if and only if they have the same mod-
els (in other words, for T and S to be equivalent, it is necessary and suffi-
cient that for every L-structure M, M is a model of T if and only if M is a
model of S).

If every formula in T is replaced by a universally equivalent formula, the
resulting theory is equivalent to T .

If T is contradictory, then S is equivalentto T if and only if S is contradictory.

The theory T is equivalent to the empty theory if and only if every formula
belonging to T is universally valid.

Every L-structure is a model of the empty theory.
The empty theory is consistent.
The set of all closed formulas of L is contradictory.

The theories {G)} and { H} are equivalent if and only if the formulas G and H
are logically equivalent.
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o Thetheories{F1, F>,..., Fnland{G\,G2,...,Gp}areequivalent if and only
if the formula

(FINFaN---ANFp) & (GiANGaNA---ANGp))

is universally valid.
e Any finite theory is equivalent to a theory that consists of a single formula.

e The binary relation ‘is universally equivalent to’ is an equivalence relation on
the set of formulas of L.

e The binary relation ‘is equivalent to’ is an equivalence relation on the set of
theories of L, i.e. on the set of subsets of the set of closed formulas of L.

Proof We invite thereadertosupplyproofsindependently (this primarily involves
arguments analogous to those used in the proof of Lemma 1.38). ]

The next proposition expresses the fact that the equivalence relation ~ for for-
mulas is compatible with the operations that enter into the construction of formulas
(the use of connectives and quantifiers).

Proposition 3.52 For all formulas F, G, F' and G’ and for every integer k, if F
and G are equivalent to F' and G’ respectively, then the formulas

—=F, (FAG), (FvG), (F=G0G), (F<+ G), YuF and 3uF
are equivalent, respectively, to
—F', (F'AG", (F'VvG), (F =G, (F & G, YuF' and v, F'.

Proof Let us treat, for example, the case of existential quantification. Suppose
that the formulas F and F’ are equivalent and that their free variables are among
Vo, V1, ..., Un (n > k). We need to prove that the universal closure of the formula
(Jui F < Jug F') is satisfied in an arbitrary L-structure M = (M, ...). So let us
consider elements ao, ay, - - -, @k—1, Qk+1, - - - » an Of M. If we suppose that

(M vy —> ag, ..., 0—1 —> Qk—1, Vgt1 —> Gktls -+, Up — dp) = JuF,
then we can find an element a € M such that
(M :vo— ao,...,0—1 = Gg—1, Vk => Q, Vk+1 —> Qk+l,--.,Un = an) E F,
but, since F and F’ are equivalent, we also have
(M:vo— ao, ..., V-1 = Qk—1,Vk —> Q, Vk+1 > Qk41,---,Un-> an) = F',

and hence

!
(M :vp = ag, ..., -1 = Qk—1, Vk+] —> Q41s--., Up —> ay) = U F.
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The converse is obtained in exactly the same manner. If

!

(M :vg— ag, ..., -1 > Qk—1, Vkt] = Qksl,--.,VUp = dp) = I F',
then

(M:vo— ag,..., k-] = Qk—1, Uk+1 —> Qk+1s--->Up —> ap) =30 F,

so we may conclude that

(M:vog— a0, vi > al, ..., Vk—1 —> Qk—1, Vk+] = Qk+1,--->Vn —> dn)
= QueF & JuF).

The other cases are treated in a similar fashion. ]

Corollary 3.53 Suppose that F is a formula, that G is a sub-formula of F and
that G’ is equivalent to G. Then the formula F', obtained from F by substituting
G’ for an arbitrary occurrence of the sub-formula G, is equivalent to F.

Proof The argument is by induction on F. When F is atomic, G can only be
equal to F, so F = G’ and the result is immediate. For all other stages of the
induction, it suffices to apply the preceding proposition. |

We have thus justified an operation that we perform practically all the time when
we manipulate first order formulas from a semantic point of view: we replace sub-
formulas by equivalent formulas.

Changing the name of a bound variable, provided it is done subject to certain
conditions, transforms a formula into an equivalent formula (see Remark 3.26):

Proposition 3.54 For any integers k and h and any formula F, if the variable v,
does not occur in F, then the formulas

YurF' and YupFy, ., (respectively, 3vi F and vy Fy, )

are equivalent.

Proof The result is trivial if h = k. So suppose h and k are distinct and that

F = Flv;,v,,, ..., v, vk], where the integers i1, i2, ..., in are pairwise distinct
and distinct from A and k (which the hypothesis allows). Given an L-structure
M = (M,...) and arbitrary elements a1, a2, ..., an of M, what needs to be

proved is that

(M:vg,———>a1,vi2—>a2,...,vi —-e»an)}:Vka (*)

if and only if
(M LV, —> a1, Vi, —> Az, ..., 0, —> an) = Yun By, o (F%)

and the analogue for 3.
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Property (*) means that for any element a € M, we have
(M P Up = @, Vj; —> A1, Vi, —> G2, ..., U, —> an} L= B
but according to Lemma 3.44, this is also equivalent to
(M: Uk —> a,Vp —> @, Vj; = ai, v, —> az,..., Y, —>an) = F.

We may then apply Proposition 3.45 (our hypotheses allow this), upon observing
that

= EM[vh —> a, Vi, —> ai, Vi, = az,..., v, —> aul,
and we obtain the following property, which is equivalent to (*):
foreverya € M, (M : vy — a, v, — a1, vy, = Gy, ..., v, = an) = Fy, jy;
which, by definition, means

(M 3R TR Y T e an) = Vv, Fog /vy,

1

in other words, property (**). |

Using the tautologies and the equivalent propositional formulas from Chapter 1,
we obtain, 1n a natural way, countless examples of universally valid formulas and
others equivalent to them. The importantproperties that follow will supply us with
examples that have no analogue in the propositional calculus since they involve
quantifiers. These properties are extremely useful, in particular, for mastering the
manipulation of quantifiers in statements of everyday mathematics: among the first
exercises at the end of this chapter, several are aimed at precisely this.

Theorem 3.55 For all integers h and k and for all formulas F and G, we have
the following logical equivalences:

Vo F ~ Ju—F, (1)

Vo (F AN G) ~ (Yo F A VY G), (2)
Ju(F v G) ~ v F v v G, (3)
Ju(F = G) ~ (Yo F = v G), (4)
Yo Yo F ~ YopVur F, (5)
Jug3up F ~ Jupdug F. (6)

Moreover, the following three formulas are universally valid:

Jue(F A G) = Ju F A v G, (7)
(Vv F vV G) = Yy (F v G), (8)
JuVop F = Yop3u F. (9)
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In addition, if the variable vy is not free in G, then:

VoG ~ du G ~ G, (10)

Vur(F ANG) ~ (VYo F A G), (11)
Ju(F Vv G) ~ @Qu F v G), (12)
Yur(F v G) ~ (YurF v G), (13)
Jue(F AG) ~ 3ueF N G), (14)
du (G = F) ~ (G = JwF), (15)
Yor(G = F) ~ (G = Vu F), (16)
Ju(F = G) ~ (Yo F = G), (17)
Vu(F = G) ~ (3u F = G). (18)

Proof We obtain (1), (2), (5), (6), (7) and (9) without difficulty by referring to
Definition 3.42; (3) and (8) are deduced from (2) and (7) respectively (applied
to --F and —G) together with (1) and familiar tautologies; (4) is an immediate
consequence of (3) applied to —+F and G; when we take the additional hypoth-
esis about v, into account, (10) and (13) follow from the definition and Lemma
3.44; (11) and (15) can be deduced from (10) and from (2) and (4); it is again
thanks to (1) and to some tautologies that we obtain (12) from (11), (14) from
(13), (17) from (15) and (18) from (16); (16) is obtained from (13) applied to F
and —G. u

It should be understood that these brief suggestions presuppose intensive use of
Proposition 3.52 and Corollary 3.53.

We could say, loosely speaking, that the universal quantifier is ‘distributive’ over
conjunction but not over dis junction, while the opposite is true for the existential
quantifier. That is what is expressed by properties (2) and (3), together with the fact
that the universal validity of formulas is not preserved, in general, when we replace
the symbol = by < in (7) and (8): to see this, consider the language L thathastwo
unary relation symbols A and B;let F = Avp and G = By and take the model
M whose underlying set is N and in which A and B are interpreted, respectively,
by the relations ‘is even’ and ‘is odd’; it is then clear that M satisfies the formulas
Jvg F A JuoG and Vvo(F Vv G) butdoes not satisfy the formula Jvg(F A G) nor the
formula VvoF v VvoG. The behaviour of the quantifiers with respect to implication
is more complicated; what one can keep in mind is this: if we try to ‘distribute’
the quantifier in a formula of the form Qv (F = G), where Q is V or 3, then, in
those circumstances where this is possible,

e if the quantifier ‘enters’ on the right side of the symbol =, then it ‘enters’ as
is; whereas,

e :f the quantifier ‘enters’ on the left side of the symbol =, it must be replaced
by itsdual Q* (Q* =3if Q =Vand Q* =V if Q = 3).
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We can permute two consecutive universal (existential, respectively) quantifiers
(properties (5) and (6)), but not a V with a 3: (9) is no longer universally valid if we
replace = with <. To see this, consider once again the model M above and let F
be the formula (Avp & Buv)); then M |= VYuvo3u F (since for any integer «ag, we
can find an integer ¢, whose parity is different from that of ag) but M ¥ Jv|VuoF
(for we can hardly insist that an integer have a parity that is distinct from the parity
of an arbitrary integer. . . ). The formula Vv, 3vy F expresses the existence of a v
for each v, (so it may vary with vs) whereas the vy whose existence is expressed
by the formula Jv, Vv, F must be ‘the same for all v,’, which is what makes this
formula ‘stronger’ than the preceding. There are classic illustrations of this remark
in analysis involving the distinction between simple and uniform continuity and
the distinction between simple and uniform convergence: we know well that the
heart of the problem consists in determining whether ‘the § (or the N) depends
on x or not’. .. and, ultimately, when we express these properties formally, they
differ precisely by an inversion of the order of the quantifiers.

Using the results from Chapter 1 on complete sets of connectives, together with
Lemma3.49, Proposition 3.52 and Corollary 3.53, andproperty (1) of the preceding
theorem, we immediately obtain

Theorem 3.56 FEvery first order formula is universally equivalent to at least one
Sformula whose only symbols for connectives and quantifiers are: —. vV and 3.

In this statement, we can obviously replace — and v by the elements of any
complete set of connectives; we can also replace 3 by V.

Remark 3.57 An analogue of Remark 1.33 applies here as well: to prove that
a certain property, compatible with the relation ~, is true for every first order
formula, it is sufficient, in a proof by induction, to ‘restrict’ oneself to the stages
that relate to negation, disjunction and existential quantification.

We conclude this section with a result that is very easy but indispensable. It
concerns comparing the satisfaction of a formula in a structure for its own language
with its satisfaction in a structure for a richer language.

Lemma 3.58 Consider a first order language L and a language L* that is an
enrichment of L. Let M = (M, ...) be an L-structure, let M* be an enrichment
of M for the language L*, let F = F[vo, vl,...,vn—1] be a formula of the
language L and let ag, ay, ..., an—) be elements of M.

Under these conditions, we have

Mk Flao, a1, ..., an—1] ifandonly if M* |= Flao, ays - - -~ dn-1]-

Proof The only thing that is perhaps not obvious is that these two properties
make sense! We convince ourselves by noting that F is both a formula of L and a
formula of L*. For the rest, a quick glance at the definition of the satisfaction of
F in M reveals that this depends only on the symbols of L and on the functions
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and relations of the structure M. So the result is automatic (the reader who wishes
to be completely rigourous should give a proof by induction on F). |

Observe, however, that this question would not have made sense if F contained
symbols of L* that did not belong to L.

3.5 Prenex forms and Skolem forms

What we do in this section will be amply used in the next chapter in which we¢
will describe methods that allow us to answer questions of the form: ‘is this closed
formula universally valid?’ or ‘is it a consequence of such and such a theory?’ The

idea will be toreduce the question, at the cost of changing thelanguage, to formulas
whose syntactic construction is relatively simple: the Skolem forms. Beforehand

w e will show thatevery formula F isequivalenttoa formula (of the same language}
structured as a sequence of quantifications followed by a quantifier-free formula
(this will be called a prenex form of F). The interest and import of Theorem 3.60
about prenex forms extends beyond the context just described. It also presents &
(slight) danger, in that it leads one to believe that a formula is ‘easier to understand’
when it is in prenex form: in fact, one quickly realizes that the contrary is true and
that, to comprehend the property expressed by a closed formula, one is well advised
to ‘distribute’ the quantifiers to the maximum extent possible, 1.e. to do the exact
opposite of putting it in prenex form.

3.5.1 Prenex forms

Definition 3.59 A formula F is prenex if and only if there exist an integer k,
variables wi, Wy, ..., Wi, symbols for quantifiers Q1, Q2, ..., Ok and a formula
G without quantifiers such that

F=QiwiQows--- QrwrG.

The word Q1w Qaw, ... Qrwk is then called the prefix of the prenex formula.
A prenex formula is polite if and only if its prefix contains at most one occurrence
of each variable.

If H is a formula, a prenex formula that is universally equivalent to H is called
premnexform of H.

A universal formula is a prenex formula with no existential quantifiers.

An existential formula is a prenex formula with no universal guantifiers.

Naturally, the case k = 0 corresponds to the situation in which F' = G, which is
to say that formulas without quantifiers are special cases of prenex formulas (and
they are, by the way, polite, universal, and existential).

We see immediately that any universal closure of a prenex formula is also «
prenex formula.

Caution: a formula such as Vvg(3v vg =~ v1 = vg >~ v)) is not prenex!

Theorem 3.60 Every first order formula has at least one polite prenex form.
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Proof We will prove by induction that for any formula F', we can find a polite
prenex formula F’ that is universally equivalent to F. Because it is clear that this
property is compatible with the relation ~ we may, by Remark 3.57, restrict the
number of cases to be considered.

e If F is atomic, it suffices to take F' = F.

o If F = —G, and if G is equivalent to Q;v1 Qovs ... QxviG”, where G” is
quantifier-free and the variables w; are pairwise distinct, it suffices to take

F'= Qv 02v;...0%v—G"” where, for 1 <h < k, Qy, is the dual of Q.

o If F= (G v H),if G is equivalent to G’ = Q1viQv; ... QxvrG” and H to
H = Q210%2 - .. Q,,zm H" (Where G” and H” are quantifier-free and where,
in each prefix, the variables are pairwise distinct), then after first choosing k +m
pairwise distinct variables xj, x2, . .., X%, ¥1, Y2, - - - » Yie thathave no occurrence
in G’ orin H’, it suffices to set

G =G" and H; = H”

X1/ w1,x2/ w2 oo Xk [Whe n/z21.¥2/22+--Yml Zm

and to take

F'=Qix100x2... Okxi Q1y105y2 .. @y ym(G1 Vv Hy).

To verify that this formula is indeed equivalent to F, we mainly apply
(k + m times) Proposition 3.54 and properties (12) and (13) of Theorem 3.55.
It is appropriate to note that the order in which we repeatedly apply these two
properties is of no importance: we might, for example, first bring all the Q’j to
the front, then all the Q;, or else alternate them arbitrarily; on the other hand,
what cannot change (except in special cases) is the orderof the Q; among them-
selves, or that of the Q’j among themselves. We see, in any case, that we are far
from having a unique prenex formula equivalent to F.

e If F = JvG and if G is equivalent to Q1w Qw; ... QwiG”, where G”
is quantifier-free and the variables w; are pairwise distinct, then either v &
{wy, wy, ..., w} and it suffices to take F' = JvQiw; Qw3 ... QrwiG”, or
else w = w; for some index j between | and #: in this case, w is not free
in the formula Q1 w; Qawy ... QrwiG”, sowecantake F/ = Q1w; Qow; ...

Qi wrG” since this polite prenex formula is equivalent to F by virtue of property
(10) of Theorem 3.55. |

Remark 3.61 The proof we have just given furnishes a procedure for constructing
a prenex formula that is equivalent to a given formula F (we also speak of ‘putting
F in prenex form’). If we scrupulously follow this procedure, we must begin by
eliminating the symbols N, =, < and V. In truth, the only indispensable step is
to eliminate < . i is then possible, by judiciously changing the names of bound
variables, to progressively ‘bring the quantifiers to the front’ by climbing the
decomposition tree, using, step by step, the properties presented in Theorem 3.55
as we did above for the induction step involving disjunction. Of course, depending
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on the circumstances, we can be more or less efficient in changing the names of
variables: it is rarely necessary to rename all the variables that occur, as we did
above.

The obvious purpose of these name changes of bound variables is to obtain ¢
formula in which no variable occurs in the scope of more than one quantification,
in order that Theorem 3.55 apply in all cases. A byproduct is a potential increase
in the number of variables in use. However, if we wish to minimize the length (and
height) of the prenex form, it can happen, on the contrary, that we are better served
by substituting, for a given bound variable, a variable that already occurs in the
scope of some other quantification. Let us take an example: the formula

F =VYyg(Vvi—v) @ v = dvavg = 1) A Vv 22 vg
is equivalent to the prenex formula
G = Yyodv1FvaVusz((—ov] > v = vg 2= 1) A v3 22 13),

obtained as described above, by changing the name of the bound variable v, (into
v3) in the scope of the rightmost quantification in F; but we can find a simpler
prenex form when we observe that properties (2) and (4) of Theorem 3.55 are
applicable here: this leads us to substitute (in F) v for the occurrences of v,
then v for the last three occurrences of v); the formula obtained in this way is
H == Vvo(Yv1(—v ~ vy = Jujvg = v1) A Yugug = vo; itis indeed equivalent tc
F and the properties to which we just referred produce the following prenex form.

Vvodvi((—v) = v = vg 22 v1) A vg = vg),

whose height is 5 (that of G is 7) and which is obviously shorter than G.

Remark 3.62 The last part of the proof of the preceding theorem clearly showed
that to getfrom an arbitrary formula in prenex form to an equivalent prenex formulc
that is polite, it suffices, for each variable, to suppress in the prefix of F all but the
rightmosr quantification involving that variable. For example, if G is a formulu
without quantifiers, the formula

Yvodvidvodve Vv dvgdvzAvg G
is logically equivalent to the polite prenex formula
Jvp Vv vz dvg G.

Remark 3.63 Whenwe apply the method described above to obtain a prenex form
of some given formula F, the result is a formula that has the same free variables
as F (this is immediately verified). In particular, applying the method to a closed
formula produces a prenex formula that is closed.

Let F be a first order formula, let G be a prenex form of F, and let H be the
subformula of G obtained by suppressing the prefix. As H is quantifier-free, it is
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obtained from some propositional formula J by a substitution of the kind described
in Remark 3.27. As for any propositional formula, J has a conjunctive normal form
Ji and a disjunctive normal form J,. The substitution that transforms J into H
will transform J; and J7, respectively, into first order formulas H1 and H2 which
are clearly universally equivalent to H. The prenex formulas G| and G, obtained
by placing the prefix of G at the front of H| and 1, respectively, are equivalent to
F.We say that G| (G2, respectively) is a conjunctive (dis junctive, respectively)
prenex form of F.

3.5.2 Skolem forms

Consider a polite prenex formula of alanguage L. Thus there exist pairwise distinct

variableswj, wy, . . ., wn,quantifiers 01, Qa, ..., 0, and a quantifier-free formula
G of L suchthat F = Q1w Qaw; - -- QawaG.
Denote by ji, j2, ..., jp the indices of those Q that correspondto an existential

quantification: that is,

i d2. . dpt=1{ie{l,2,....,n}: Q; =3}

(weassume | < jj < jo <+ < jp < n).
With F, we will associate a language Lgk(F') that will be an enrichment of
the language L obtained by adding p new symbols f}. f2, ..., f, for constants or

functions (these are called the symbols for the Skolem functions associated with
F and they correspond to the p occurrences of the symbol 3 in the prefix of F').
For 1 < h < p, the arity of the symbol f, mustequal j, — h, i.e. the number of
times the quantifier V occurs to the left of Q;, in the prefix of F (we adopt the
convention of treating constant symbols as function symbols of arity 0; for fp to
be a constant symbol, it is necessary and sufficient that j, = A, i.e. that the first A
quantifications in the prefix of F be existential; naturally, in such a situation, f],
f2, ..., fn—1 will also be constant symbols; moreover, the arity of f, increases
with A&). For example, if the prefix of F is

VugVvdvyVuzdvgVusVvgduydvgVogVu gduy g,

five new function symbols f1, f2, f3, fa and f5 whose respective arities are 2, 3,
5,5, and 7 will be added to the language L.

Now that we have defined our new language, we will use it to define a formula
Fsk, which will be a polite universal formula of the language L sx(F) and which
we will call the Skolem form of F

Firstof all, for 1 < h < p, we let up denote the term of Lg (L) that consists of
the symbol f;, followed by the j, — h universally quantified variables that occur
to the left of the variable wj, in the prefix of F. In other words,

Up = frWIw - Wj—JWjigf Wi A Wiy = Wi =1 Wiy 41 Wjy—1-
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Then, for each index A between 1 and n, we replace each occurrence of the
variable wj, in G by the term u,.

Finally, in front of the formula thus formed, we place the prefix of G from which
all existential quantifications have first been deleted.

We arrive in this way at the Skolem form of F, which is, therefore,

For=Vwy...Vw; 1Ywj4y...Vwj, (Vwj,+1 ... Vwj,—Vw; 11..Vw,
Gul/wv,-l M2 Wiy, upf/wj,

Example 3.64 Suppose the language L consists of a unary function symbol f
and a binary relation symbol R. Consider the following formula F of L:

dvgdv Vv duzVugVusIue ((Rvgvy A fus =~ v3) = (Rfvgva V{(Rvivs A Rugus))).

The language L gk (L) then contains, in addition to the symbols R and f, four
new symbols: two constant symbols f] and f3, a unary function symbol f3 and a
ternary function symbol f4. The Skolem form of F' 1s the formula

VipVuaVus((Rfiva A fus = fave) = (Rf favpuavsva V (R fovs A Rug f312))).

Given an arbitrary formula F in a language L, we have seen how tofind a polite
prenex formula F' that is equivalent to F. The Skolem form of F’ will also be
called a Skolem form of F (so we do not have uniqueness of the Skolem form of
an arbitrary formula).

It is very important not to lose sight of the fact that a Skolem form of a formula
F of a language L is not (in general) a formula of L, but of a richer language.
This will allow us to avoid a rather common error which consists in thinking that
a formula is equivalent to its Skolem form. Such a statement makes sense only if
we view F as a formula of the enriched language L« (F), which is, of course,
possible but we realize right away that in order to support this, we would be led
to examine arbitrary Lg(F')-structures and that the proposed equivalence would
be rather pointless. An example would really be more convincing that an overly
lengthy dissertation: the Skolem form of the formula FF = Vvg3v; Rypv) is the
formula VvgRvggvp (we have added the symbol for the unary Skolem function g
to the initial language L consisting of the binary relation symbol R); the structure
whose base set is Z., in which R is interpreted by the usual order relation and g by
the map n —— n — 1, obviously satisfies the first formula but not the second.

Whatistrue, none the less, isthatevery formula F,consideredas a formula of the
language L sk (F), is a semantic consequence of its Skolem form. As well, provided
we allow the Axiom of Choice (see Chapter 7 in Volume 2), any L-structure that
satisfies a (closed) formula F can be enriched to an L gx(F)-structure that satisfies
the Skolemformof F. A notable consequence of this is that for a closed formula te
be satisfiable, it is necessary and sufficient that its Skolem form be satisfiable (we
sometimes say that F' and Fgsx are equisatisfiable, in the absence of their being
equivalent). It is this last property that will be mainly used in the next chapter.
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Before proving everything that we have just claimed, let us verify it on a very
simple example in which the essential ideas are clearly apparent.

Let us reconsider the formula F' = Yvg3v; Rugv; that we just used as an example.
So we have L = {R}, Lsxk(F) = {R, g} and Fgt = VYvgRuggug. Let M =
(M, R,2) be an Lsy(F)-structure that satisfies Fs. This means that for every
elementa € M, we have (a, g(a)) € R. Obviously then, foreveryelementa € M,
we can findan element b € M (namely, g(a)) such that (a, b) € R, which means
that M satisfies the formula F. Thus, Fgx = F is a universally valid formula of
Lsi(F).

Now consider an L-structure N = (N, p) that is a model of the formula F.
This means that for every element a € N, the set of those elements b € N such
that (a,b) € p is non-empty. It is here that the Axiom of Choice intervenes: it
guarantees the existence of a map ¢ from the set of non-empty subsets of N into
N (called a choice function on N) such that forevery non-empty subset X C N,
the value of ¢ at X isanelement of X (¢(X) € X). With the help of such a choice
function ¢, we will enrich AV into an L gx(F)-structure that will satisfy Fsx. The
problem is to provide an interpretation for the extra symbol g. For this, we will
take the map y defined on N in the following way: foralla € N,

y@)=¢({be N :(a,b) € p}).

Itis then clear that the Lgx(F)-structure (N, p, y) is a model of Fgy.
Let us now approach these properties in the general case.

Lemma 3.65 Let y|, y2,..., yn be pairwise distinct variables and let F =
Flyi,y2,...,Yn] be a polite prenex formula of a language L. Then the formula
Fsx = F of the language L sk (F) is universally valid.

Proof By induction on the number of occurrences of the existential quantifier in
the prefix of F, we will prove, for every Lsx(F)-structure M = (M, ...) and for
all elements by, b2, ..., b, of M, that if the formula Fg is satisfied in M by the
sequence (b1, b2, ..., by), then the formula F is also satisfied in M by the same
sequence (recall that the formulas Fgx and F have the same free variables). The
result is evident when the formula F' has no existential quantifiers at all, for then
Fsx = F. Suppose (this is the induction hypothesis) that the result is true for all
polite prenex formulas that have at most k existential quantifications and suppose
that F has k + 1 of them. Thus

F ZVX|VX2...meHXG[y1, yz'l L '7yﬂax|s-x29 '--r-xPH?xL

where G itself is a polite prenex formula with at most k existential quantifications.
There is then an m-ary function symbol f7 in the language Lgx(F') such that the
Skolem form of F is the formula obtained from the Skolem form of the formula

Pl =Y Vx5..... VoG Y1 Y25 s 5 5 5 Vms Bls XDy s Xipy K]

by substituting the term fjx(x2...x,, forthe variable x.
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So we have

= Fl .
Fst = Fsis o cmin

(We should note that Lsx(F’) = Lsk(F) — {f1}. So we may consider F’ as a
formula of Lgi(F), whose satisfaction in an Lg-structure is equivalent to its
satisfaction in the reduced language L sk (F') (see Lemma 3.58)).

But we see immediately, by referring to the definition of the Skolem form, that
starting from the formula F’, the result of first taking its Skolem form and then
substituting into it fixyx;...x, forx is exactly the same as the result of perform-
ing these two operations in the opposite order, i.e. of first doing the substitution in
F’ and then taking the Skolem form of the formula thereby obtained; this depends,
essentially, on the fact that the variables involved in the substitution are not exis-
tentially quantified in F’. So we also have

ot
Fsk = Ff]xl-x2---xm/x3;¢ :

The formula }] [ is a polite prenex formula with at most k existential

quantifiers, so we may apply the induction hypothesis to it:
if (M:y = bi,y; > ba, ..., yn = b,) = Fgi, then we also have

(M:y = bi,y2 > b2, ....yn— ba) E F}lxxxz...xm/x’
which means that for all elements ay, a2, ..., am of M,
(M:yi > bl,...,yn—=>bpy X1 = ats...oxm = am) FE G fixingexm/x-
Again, this is equivalent (Proposition 3.45) to
(M:yr = bi,....,yn = bpyx1 = Qi ..., Xm = am,

x—>ﬂM (al,az,...,am))}:G.

Thus, forallay, a2, ..., am, there exists an element b € M, namely
ﬁ (aI,GZa---,am)a
such that
(M:yr—=>bl,...,yn > by, x1 > ai,...,xm = am,x = b) =G,

which proves that
M:y1 = b1y....¥n—=>bn,x1 > a1,...,xXm = am, ) = 3IxG,
and, finally,

(M:iy > bi,y2 > b2, ..., Yn > by) EVXIVX2...VXn3AxG,

which is the long awaited property. |
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Lemma 3.66 (using the axiom of choice) Assume that L is any language, that
Y1, Y2, ..., Yn are pairwise distinct variables, that F = F[y1, Y2, ..., Yn] IS in
polite prenex form, that N = (N, ...) is an L-structure, and that the n-tuple
(b1, b2, ..., bn) of elements of N satisfies the formula F in N'; then it is possible to
enrich the structure N to an Lsk (F)-structure in which the n-tuple (b, by, . . ., bn)
satisfies the formula Fs, the Skolem form of F.

Proof Once again, the proof is by induction on the number of existential quan-
tifications in the formula F and, as before, we note that the case in which this
number is O is trivial (Lsk(F) = L, Fsx = F and N is sufficiently rich as is). So
we assume that the result is true for all polite prenex formulas (in all languages)
that have at most k existential quantifications and that F has k + 1 of these. Under
the same conditions as in the proof of the previous lemma, we may set

F=VxiVx2 ... Vxm3xGIY1, Y2y « - os Yoy X112 X25 e oo s Xmy X1
F' =Vx1Vx2 . VX G Y1y Y2y oo Yis X15X2y <o vy Xy X1

and, for the same reasons, we have

FSk T FSkfI,:;lxz....tm/x - Ff]..l’})fz-..xm/xs’\ ¥

Since our hypothesis is (N : y;1 — b1, y2 — b2, ..., y» — by) = F, it follows
that for all elements a1, a2, ..., a;, of N, the set

(beN:N:yp=>bi,..., ¥ —> by, x1 —>ai,....xXm -> am,x — b) = G)

is non-empty. So, using a choice function ¢ on N, we may define a map y from
N into N by setting

v(ai,az,...,an) =¢({be N : N = G[by,...,by,ai,...,an,bl})

forall ay,a2,...,a, In N.
We may immediately assert that (*):

forall ay,as,...,a,, in N

N:yy—>bl,....9—> bu,xy—ay,....,xpm — am,x > y(a1,az, -..,an))

=G.

Let L denote the language obtained by adding to L the m-ary function symbol
f1 of the language Lgsk (F') (the one corresponding to the firstoccurrence of 3in F’).
We canenrich A/ toan L-structure NV if we interpretthe symbol /i bythemap y,
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The previously displayed assertion (*) then becomes (by applying Lemma 3.58):
My = blecc,yn = bnyx1 = a1, ..., Xm —> G,
x —> Ti\ﬂ(al,ag, ...,am)) =G.
This is also equivalent (by Proposition 3.45) to
N :iy1—=>blyeeisYn = by, x1 > a1, Xm = am) B G fixixg..xn/x
Consequently,
N1 :yL = b, ...,yn = b)) EVXIVYX .. VXG0 xmyx]-

Since x is distinct from the x;, this last formula is none other than

/
[VX1Vx2 .. VX Gl fixixgempe = Fixixg..tm/x

which is a polite prenex formula F of the language L with at most k existential
quantifications. By the induction hypothesis, we can enrich the structure N to an
Ly, (F)-structure N* such that

(N* Syl — by, y2 — by, ..., yn — b"} = F_,f;x}xz...xm/xs/(’

We recognize this to be the formula F' (in passing, we will have observed that the
language L, (Fy) is exactly the language L sk (F). |

Corollary 3.67 Foraclosed formulato have a model, it is necessary and sufficient
that any one of its Skolem forms have a model.

Proof This is an immediate consequence of the two preceding lemmas and the
theorem about prenex forms (Theorem 3.60). [

The exercises in Chapter 4 will provide other occasions to practise the art of
putting a formula in prenex from or in Skolem form.

3.6 First steps in model theory

3.6.1 Satisfaction in a substructure

We will begin to take interest in what happens to the satisfaction of formulas when
we pass from one structure to another. Though we should not expect to have much
information when the two structures are completely arbitrary, we do have a few
elementary results at our disposal in particular cases. In fact, we have already
encountered one: the case where we compare the satisfaction of a formula in a
structure with its satisfaction in an enrichment of the structure to a more extensive
language (Lemma 3.58). We will now examine, successively, what can be said
when we study the satisfaction of a formula in two structures, first, where one is
an extension of the other, and second, where the two structures are isomorphic.
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Knowing that a formula is satisfied in a certain structure, can we conclude (when
thisis meaningful)thatit is satisfied in a substructure or in anextension? In general,
the answer is no, but we do have, none the less, some useful information if the
formula under consideration is sufficiently simple (see the next two theorems
below). We need a lemma to begin with:

Lemma 3.68 Assume that L is a language, M = (M, ...) is an L-structure,

N = (N,...) is an extension of M, t = t[vo, vy, ..., Un—1] is a term of L,
andao, ay, ..., an_| are elements of M. Then

-M N

t' [apg,al,....,am—1] =t [ag,ai,...,Qn-1].

Proof This is proved by induction on ¢:

e if ¢ is the variable v; (0 < j < m — 1), then ?M[ao,al,...,amﬁl] =
N .
t [a07ala---,am"l]=aj’

e if ¢ is a constant symbol ¢, then ?M[ao,a;,...,am_;] =M = "CN —
fN[ao,al, ..., am—1] (since NV is an extension of M);

o ift = fyt2...tp,where f isa p-ary functionsymboland ¢,t2,.. ., are terms
that satisfy EM[ao, ay,...,am—1] = ?‘N[ao, ay,...,am-1]forl <i < p(this
is the induction hypothesis), then

TM[ao, a,...,am—1]
. TM(HM[aO,m, e Gm—1], - ..,E’M[ao,al, R, S )
- PN aMaoar.... a1l G Maar o) (%)
= TN(HN[aO, als ..., am-1),. ..,EN[ao,al, coam-1]) (%)
— TM[ao,al, s AGm—1l].

where (*) is justified by the fact that 7M is the restriction of TN to Mk and
(**) 1s a consequence of the induction hypothesis. ]

Theorem 3.69 Assume that L is a language, M = (M, ...) is an L-structure,

N = (N, ...) isanextensionof M, F = F[v, Vi, ..., Um—1]is a quantifier-free
formula of L, and ao, ay, ..., am-) are elements of M. Then F is satisfied in M
by the sequence (ao, ai, . ..,am—) if and only if F is satisfied in N by this same
sequence.

Proof The proof is by induction on F.

e [f F is atomic, there is a k-ary (kK > 1)relation symbol R and terms ¢1, t2, . . ., t
whose variables are among vo, vy, ..., vy—1 Such that F = Rtjty - - - tx. So

(M :vo—>apg, v —>at,---,m—1 — am-1) = F
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if and only if

—M — M —M
(tr" 'lao,ay,...,am=1], ..., 8 [a0,ay,....am—1]) € R . ()

Now, according to the lemma, we have

t_iM[aO, al, ... ,am—l] = ‘t—{\[[aOs al, -. -, am—l]

forl <i < k and, since ﬁM = EN NMk (D) is equivalent to
. —N
(f—lN[ao,al, ---,am_I],---,tkN[ao,al,---,am~1]) €ER ,

which means precisely that

(N :vwp—ao,vi = ai,...,Um—1—> am—1) = F.

e The induction steps that concern the connectives —, A, Vv, =, and < are obvious.
There are no other cases to consider since F has no quantifiers. N

Theorem 3.70 Assume that L is a language, M = (M, ...) is an L-structure,

N = (N,...) is an extension of M, F = F[vo, vy,..., vm—1] is a universal
formulaof L, G = G|[vo, Vi, - . ., vm—1] is an existential formula of L, and ao, a\,
..., Qym—1 are elements of M. Under these conditions:

if F is satisfied in N by the sequence (ao, ay, . ..,am—1) then F is satisfied in M
by this same sequence;

if G is satisfied in M by the sequence (ao, a\, .. .,am—1) then G is satisfied in N

by this same sequence.

Proof The second assertion follows immediately from the first: if G is existential,
-G isequivalent to a universal formula F’ (property (1) of Theorem 3.55). If G is

satisfied in M by (ao, @, ..., am—1), then F’ is not, hence (by the contrapositive
of the first assertion) F”’ is not satisfied in A by (ao, ay, ... ,am—), which proves
that G is.

We prove the first assertion by induction on the number of universal quantifiers
in the prefix of F. If this number is 0, the result follows from Theorem 3.69.
Otherwise, FF = Vv H (where H is universal and has one fewer universal quan-
tifier than F, so, by the induction hypothesis, it satisfies the assertion). Subject to
replacing k by h = sup(k, m) and H by H,,,, (which produces a formula that is
equivalent to F), we may assume k > m (and even, if we wish, k = m). We then
have H = H[vg, vi, ..., um—1, vr] and the fact that

(N:vo—ao, vy = aj,...,um—1 —> am-1) EF
means that for every elementa € N,

(N tvg— ao, vy —> @i, ..., Um—1 —* am—1, vk —> a) = H;
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in particular, this must be true for every clement @ € M. Thanks to the induction
hypothesis, we may now conclude

(M :vg~>ap,v1 = apr, ..., 0m_1 — am—1) = Yo H.
a
The content of Theorem 3.70 can be summarized by saying that universal for-
mulas are preserved by substructures while existential formulas are preserved
by extensions. Some more refined preservation properties will be presented in
Chapter 8 (we will also have a converse to Theorem 3.70: every formula that is
preserved by substructures (extensions, respectively) is equivalent to a universal
(existential, respectively) formula.)
There is one preservation property that we have every reason to expect should
apply to arbitrary formulas: preservation by isomorphisms. This will be guaranteed
by the next theorem.

Lemma 3.71 Assume that L is a language, M = (M, ...) and N = (N,...)
are two L-structures, and that h : M + > N is a homomorphism from M into
N. Then for every termt = t[vg, Vi, ....Um—1] and for all elements agp, ai, ...,
am—1 of the set M, we have

h(fM[ao,al, e Gm1]) =Hh(ao), k@), - . h(@n-1)].
Proof The proofis by inductionon ¢:

e ifristhe variable v; (0 < j < m — 1), then each side of the proposed equality
is equal to h(a;);

e if z 1sthe constant symbol c, then the left sideis h(c™) and the right sideis o
and these are equal since A is a homomorphism;

o ift = ftit2...1p, where f is a p-ary function symbol and t1, t2, ..., tp are
terms that satisf'y h(?lM[ao, Alyr ..y Am—1]) = ?,N[h(ao), h@ai), ..., h(am—1)]
for 1 <i < p (this is the induction hypothesis), then

h(?M[ao, a, ..., am-))
= h(?M(EM[ao,al, ...,am—1],...,ﬁM[ao,a|,...,am_|]))
=N, — _
=7 (h(EMiao ars - ., am-1)), - k(G a0 ar, - .. am-1])) (%)
—N -
= 7" (@ h@o), h(aV)s ..., h@m-1)].. ..,
7V hao), h(a), ... h(am-1))) (*%)

— N h(aw), k@), ..., h(@m—1)],

where (*) holds because h is a homomorphism and (**) follows from the
induction hypothesis. [

Theorem 3.72 Assume that L is a language, that M = (M,...) and N =
(N,...) are two L-structures, that h : M —- N is an isomorphism from M
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onto N, that F = F[vg, vi,...,vm—1] is an arbitrary formula of L and that
ao, ai, --., am—1 are elements of the set M. Then F is satisfied in M by the
sequence (ao, a\, ....am—1) if and only if F is satisfied in N by the sequence
(h(ao), h(ai), ..., h(am-1)).

Proof The proofisby inductionon F.

e If F is atomic, there is a k-ary (k > 1) relation symbol R and terms ¢y, 2, ...,

tk whose variables are among vo, vy, ..., vum—] such that F = Rtit2.. . tk. So
(M :vo— ao,vi > ai,...,m_1 — am—1) = F ifand only if

—M —M —M

(tr" lao, a1y ....am—1), ..., %" lao,a1,....am—11) € R" . (*)

Because A is an isomorphism, (*) is equivalent to

— — —N
(h(t]M[ao,al, ey Gn—11), ...,h(tkM[ao,al, ...,am—1])) € R,

or again, according to the lemma, to

@ [h(ao), h(ar). ..., h(am-1)), ... ,EN[h(aO), h(ai), ..., h(am—-1)))

= EN,

which means precisely that
(N :vo = h(ao), vy = h(@i1),...,vm—1 = h(am-1)) E F.

e The subsequent induction steps present no problems (in view of Remark 3.57,
we may restrict our attention tothe cases involving —, v and 3). Forexample, let
us treat the case of existential quantification: so we suppose that F = 3vG and,
as in the proof of Theorem 3.70, that k > m and G = Glvo, vy, ..., Vu—1, Vkl;
then

(M :vg—ap, v = al,...,Um—1 = am—1) E F
means that we can find an element a € M such that
(M:1vo—>ao, VI = dAls...r Un—] = Am—1, 0k = a) &= G;
by the induction hypothesis, this is equivalent to
(N :vg — h(ao), vy — h(al), ..., vm—1 = h(am—1), vk = h(a)) E G,
which proves that
(N :vg = h(ag), i = h(ay), ..., Vm—1 — h(am—1)) E F.

Conversely, if this condition is satisfied, we can find an element b € N such
that

(N: vo h(aO)a v} — h(al)s ceey U= — h(am—l)a vy — b) |= G’
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and, since h is abijection, an element a € M suchthat b = h(a); the conclusion
now follows, as before, from the induction hypothesis. ]

3.6.2 Elementary equivalence

An immediate consequence of the previous theorem is that two isomorphic L-
structures satisfy exactly the same closed formulas of the language L. This leads
us to a notion that is absolutely fundamental in model theory, that of elementary
equivalence.

Definition 3.73 An L-structure M is elementarily equivalent to another L -
structure N (we will denote this by M = N) if and only if every closed formula
of L that is satisfied in M is also satisfied in N

Weimmediately conclude that M = N if and only if M and N satisfy the same
closed formulas of L: indeed, if a closed formula F is not satisfied in M, then
M E —=F,so N | -~F and F is not satisfied in A/. Thus we see that = is an
equivalence relation on the class of L-structures. So we will indifferently say ‘M
is elementarily equivalent to A”” or ‘M and N are elementarily equivalent’.

The notation M % N means that M and A are not elementarily equivalent.

Therefore, the following is a consequence of Theorem 3.72:

Proposition 3.74 If two L-structures are isomorphic, then they are elementarily
equivalent.

We will have countless opportunities to observe that the converse of this is far
from being true. The existence of elementarily equivalent models that are not
isomorphic is clear evidence for the fact that the expressive power of first order
languages is limited: in the usual practice of mathematics, when two structures are
not isomorphic, we can generally discern some property that is satisfied by one
and not by the other; but if the structures are elementarily equivalent, then such
a distinguishing property will not be expressible as a first order formula of the
language, nor even by a set of such formulas. If we permit ourselves to anticipate,
we can discuss an example: it will turn out that the structures (R, <) and (QQ, <) are
elementarily equivalent (naturally, the language consists of a single binary relation
symbol); they cannot possibly be isomorphic since the second is countable while
the first is not; consequently, none of the properties that distinguish them can be
expressible by a theory of the language. In particular, this is the case for the famous
least upper bound property (every non-empty subset that has an upper bounded
has a least upper bound) which is true in IR but not in QQ.

The remarks we have just made lead us to the following definition:

Definition 3.75 Let L be a firstorder language and let X (M) be a property that
an L-structure M may or may not satisfy.

The property X (M) is axiomatizable (respectively, finitely axiomatizable) if
there exists a theory T of L (respectively, a closed formula F of L) such that
for every L-structure M, X (M) is verified if and only if M is a model of T
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(respectively, of F). When this happens, w e say that the theory T (respectively, the
closed formula F) axiomatizes the property X (M).

We say that X (M) is pseudo-axiomatizable if there exists a language L* that
extends L and a theory T of L* such that for every L-structure M, the property
X (M) is satisfiedifandonly if M is the reduct to the language L of an L™ -structure
that is a model of T.

Obviously, every axiomatizable property is pseudo-axiomatizable.

Instead of ‘axiomatizable property’, we often say ‘first order property’.

What we noted above can then be paraphrased as follows: the property (for a set
and a binary relation on it) of ‘being atotallyordered set in which every non-empty
subset that has an upper bound has a least upper bound’ is not axiomatizable (it is
not even pseudo-axiomatizable).

Lemma 3.76 Ifa property is finitely axiomatizable, then so is its negation.

Proof This is immediate from the definition: if a property is axiomatized by the
closed formula F, its negation is axiomatized by the formula = F. ]

Lemma 3.77 Ifa property is not axiomatizable, then its negation is not finitely
axiomatizable.

Proof This follows from the contrapositive of the previous lemma. |

To show that a property is axiomatizable, it obviously suffices to find a set of
closed formulas whose models are precisely the structures that have the property
in question. One suspects that it is a more delicate matter to show that a property
is not axiomatizable. The fact that you have not found a theory that works clearly
does not imply that such does not exist. The example of R and Q suggests a
possible route: find two elementarily equivalent structures, one of which satisfies
the property while the other does not. Many of the exercises will focus on this type
of question. We will treat some simple examples a bit further on.

Beforehand, let us develop a very efficient tool for resolving not only these
problems of non-axiomatizability but also numerous other problems of model
theory. This is the compactness theorem for predicate calculus, which we should
consider as one of the ‘grand’ theorems of mathematical logic. Only in Chapter 4
will we see the proof, but it would be unfortunate not to allow ourselves the
possibility of using it right away (which will be done in many of the exercises),
especially since its statement is very simple, all the more for those who have
previously studied the analogous theorem for propositional calculus.

Theorem 3.78 (with the axiom of choice) For a theory in a fir st order language
to be consistent, it is necessary and sufficient that it be finitely consistent.

As for the propositional calculus, this compactness theorem has several equiva-
lent versions:

For a first order theory to be contradictory, it is necessary and sufficient that
some finite subset be contradictory.
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Or again:

For a closed formula F ofa firstorder language L to be a semantic consequence
of a theory T of L, it is necessary and sufficient that there exists a finite subset To
of T such that F is a semantic consequence of To.

The equivalence of these three versions follows directly from Theorem 3.51.
Also, the ‘necessary’ part of the first version and the ‘sufficient’ part of the other
two are evident.

We will now examine the question of the axiomatizability of some standard
properties, relative to structures for the simplest possible language: the language
whose only symbol is the equality symbol. Clearly, these structures are none other
than the non-empty sets.

Forevery integer n > 2, the property ‘is a set with at least n elements’ is finitely
axiomatizable thanks to the formula:

Fo=3w3vy... 30 f\ —v~v;.

I<i<j<n

The property ‘is a set with at most n elements’ is axiomatizable by the formula

T rp4]-
The property ‘is an infinite set’ is axiomatizable by the following theory:

{Fp, :neNandn > 2}.

Two natural questions now arise. Is the property ‘is an infinite set’ finitely ax-
lomatizable? Is the property ‘is a finite set” axiomatizable? The answer in both
cases is ‘no’.

Theorem 3.79 The property ‘is a finite set’ is not pseudo-axiomatizable.

Proof The proof is by contradiction. Suppose 7 is a theory in a language L that
conforms with the properties required by Definition 3.75. Then T U {F,, : n € N
and n > 2} is a set of closed formulas of L that is contradictory (for to satisfy it,
a set would have to be both finite and infinite!). By the compactness theorem, we
can find a finite subset 7" C T U {F,, : n € N and n > 2} that is contradictory.
There certainly exists an integer p such that

T'CT,=TU{(F,:2<n < p).

Sothe theory 7}, itself is contradictory. But we can see right away that thisis false:
for the finite set {2, 3, ..., p} is, according to our hypothesis, the underlying set
of at least one L-structure M that is a model of 7', and M obviously satisfies F»,
F3, ..., Fp, sois a model of 7). O

From Lemma 3.77, we also immediately obtain:

Theorem 3.80 The property ‘is an infinite set’ is not finitely axiomatizable.
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However, the infinite sets are precisely those that can support a dense total order-
ing. So we might say that ‘being an infinite set’ is a ‘pseudo-finitely-axiomatizable’

property.
Here 1s another absolutely fundamental notion:

Definition 3.81 A theory T in a language L is complete if andonly if
(1) T is consistent; and
(2) all the models of T are elementarily equivalent.

Lemma 3.82 Foratheory T inalanguage L to be complete, it is necessary and
sufficient that

(1) T is consistent; and

(2) for every closed formula F of L, we have that either T -* F or T +-* = F.

Proof If the second condition is not satisfied, we can find a closed formula F of
L suchthat T ¥* F and T ¥* -+F, which means that there are two models M and
N of T suchthat M ¥ F and N ¥ --F, or in other words, M ¥ F and N = F.
So we see that M # N/, which contradicts condition (2) of the definition and so
T 1s not complete. Conversely, if T is not complete but is consistent, we can find
two models A and B of T such that A = B, which provesthat there is some closed
formula F that is satisfied in A but not in B3; so neither T -* F nor T I-* —F can
hold. u

Example 3.83 I[n the language whose only symbol is equality, the theory con-
sisting of the single formula YvoVvivg >~ v is complete. Indeed, the models of
this theory are the sets with only one element; these are all isomorphic, hence
elementarily equivalent. In this same language, the empty theory is not complete:
indeed,every L-structure is a model of this theory and it is not difficult to find two
L-structures that are not elementarily equivalent; thus a set with only one element
satisfies the formula YvgVv;vg >~ v but a set with at least two elements does not
satisfy it.

Remark 3.84 The fact that a theory is complete or not depends in an essential
way on the chosen language: if we consider the formula YvgVvivg >~ v; as a
formula of a language that has, in addition to the symbol ~, a unary relation
symbol P, we see immediately that it is no longer a complete theory, for some of
its models will satisfy Ivg Pvg and others will not.

Having some more interesting examples in mind, let us consider another defini-
tion:

Definition 3.85 Givenan L-structure M, the set of closed formulas of L that are
satisfied in M is called the theory of M and is denoted by Th(M):

Th(M)={F € F(L) : Fisclosedand M = F}.

Theorem 3.86 For any L-structure M, Th(M) is a complete theory of L.
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Proof On the one hand, 7h(M) is consistent since M is, evidently, a model. On
the other hand, forany closed formula F of L, we have

e either M = F, in which case F € Th(M), so Th(M) +* F;
e orelse M ¥ F,inwhichcase M |= —F,so—F € Th(M) and Th(M) * =F.

Invoking Lemma 3.82 now completes the proof. |

We will find many examples of complete and incomplete theoriesin the exercises.

3.6.3 The language associated with a structure and formulas
with parameters

Consider a language L and an L-structure M = (M, ...). We will enrich the
language L to a language, denoted by Lj; and called the language associated
with the L-structure M, in the following way: with each element a € M, we
associate a new constant symbol denoted by a; we assume that these new symbols
arereally new (i.e. aredistinct from all the symbols of L) and thatthey are pairwise
distinct (if a # b, then a # b). We then set

Ly =LUl{a:ae M}

[tis then not very difficult to enrich M into an L p;-structure. We must decide
on an interpretation for each of the new symbols. No one will be surprised when
we decide to interpret the symbol a by the element a. If we denote the enriched
structure by M*, we then have foreverya € M:

aM =

a,

and we assign to the symbols of L the same interpretations in M* that they had
in M.

With every formula F = Flvgvy,..., vs—1] of L and with every m-tuple
(a0, ai, . ..,an_1) of elements of M, we can, in a natural way, associate a closed
formula of the language L ps: specifically, the formula Fg, v, 4, JV1 eeer -1 [V
which, according to our conventions, could also be written - -

Flao, a1, -..,am-1}.

We then obtain the following result:

Theorem 3.87 The following properties are equivalent:

(1) <M V0 —> Ao,V 2> Aaly...,Upn—1 —> am—l) '= F
() M k= Flag,ay, - ., am—)
Proof Recall that F lao. a1, - .., am—1] 1s the following formula of L p;:

ngg/vs,a_i/vl.m,am-z/vm—l :
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Before giving the proof, we should note that it will provide the justification that
we promised in Section 3.3.2 for the notation:

M = Flap.ay,...,am-1] (*)

that we have already suggested as a possible abbreviation for property (1) above
(and of which we have already made use). Indeed, we get from property (2) to (*)
by forgetting to place the asterisk on M and to underline the a;. The abuses that
consist in identif ying, on the one hand, the elements of a model with the constant
symbols that represent them in the enriched language, and, on the other hand,
identif ying the model with its natural enrichment to this language, present no real
danger and we will often adopt them. Once the theorem is proved, an assertion
such as (*) can have two distinct meanings but the theorem tells us precisely that
these meanings may legitimately be treated as one. L]

In fact, this theorem is a special case of the following more general result:

Lemma 3.88 Foranyintegers p and q, any pairwise distinct variables xo, x1, . .

. |

Xp--1,Y0, Y1, - - -» Yg—1,any L-formula G = G[x0, X1, ..., Xp—1, Y0, Y1, -+ .» Yg—1]
and any (p + q)-tuple (ao,ayi, ....ap—1,bo, b1, ..., bg—1) of elements of M, the
following two properties are equivalent:

(1) (M IXO - aOa xl - ala O C 'a-xp—l - a[)—la

(2) (M* :y0--> bo, y1 = by, ..., Yg—1— bq—l) = G@/xﬂ,fl_l/xl‘---»alr—]/xp—l'
Proof The proof is by induction on G. If G is the atomic formula Rzt ... t
(where ¢1, 12, ..., tx are terms of the language whose variables are among xo,
X1,..Xp—1,Y0, Y1, ..., Yg—1), then property (1) is equivalent to

—-M —M —-M
(117 lao, ...,ap—1,b0, .. . bg—1), ..., & [ao,...,apﬁl,bo,...,bq_l])ER ;

and property (2) is equivalent to

_M*______ * *

(tl [a_OMs---aap—lMsta'--sbq—le---;
—M* * * — M*
Ly [a__QM,...,ap_lM,bo,...,bq_l])eR )

Now, ﬁM* = ﬁM and EM* = EM for 1 < j < k since these are symbols for a
relation and for terms of L. The desired equivalence is now a consequence of the
definition of the a_jM*.

The other steps in the induction are easy. Let us examine existential quantifica-

tion: if G = 3zH[x0, X1,...>Xp—1, Y0; Y1s - -, Yg-1, Z| (for reasons mentioned
in Theorem 3.70 and in Theorem 3.72, we may suppose that z is distinct from the
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x; and the y;), then property (1) means that there exists an element a € M such
that

(M :x0=>ao ..., Xp—1 => Qp—1,Y0 = bo, ..., Yg—1 = by_1,2—>a) F H,

which is equivalent, by the induction hypothesis, to the existence of an element
a € M such that

(M* 2 y0 —> bo, y1 = by, ..., Yg—1 — bq—ls z—>a) Ha_o/m,a_l/xl,...,a,,_l/x,,_l;

but, by the definition of satisfaction, this is equivalent in turn to
(M* 1Yo —> bo,y1 = by, ..., Yg—1 — bq——h) = EIZHa_(}/xg,ﬂ/m,...,a!,_.lfxp_[;

and this last formula is none other than G ,y/xg.a;/x1.....u, 1/x,_,- This proves the

PREEE]

equivalence of properties (1) and (2). [

To obtain the theorem, it obviously suffices to take g = 0 in the lemma. Observe
that there was no way to bypass the generalization that this lemma provides: indeed,
in the induction proof, it is not possible to only consider closed formulas of the
language L ;.

The formulas of the language L, are often called formulas with parameters
in M, the parameters being precisely the elements of M which have ‘become’
constant symbols. We will use this concept extensively in Chapter 8. At that time,
we will have a need for the following two definitions that relate to a model M and
a language L:

Definition 3.89 The set of closed quantifier-free formulas of Ly, that are satis fied
in M* is called the simple diagram of M and is denoted by A (M).

Definition 3.90 The set of closed formulas of the language Ly that are satisfied
in M* (i.e. the set Th(M™)) is called the complete diagram of M and is denoted
by D(M).

Some authors use the phrase elementary diagram instead of complete diagram.
They have an excellent reason for doing this that will appear in Chapter 8. As itis
not necessarily simple to make the distinction between simple and elementary, we
prefer to insist on our terminology (an elementary precaution. . . ).

We will state right away a result whose proof will be given in Chapter 8. It allows
us to characterize, up to isomorphism, the extensions of a structure.

Theorem 3.91 Given an L-structure M, for an L -structure N to be a model
of the simple diagram of M, it is necessary and sufficient that M be isomorphic
to a sub-structure of the reduct of N to the language L.

3.6.4 Functions and relations definable in a structure
Consider a first order language L and an L-structure M = (M, ...).
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Definition 3.92

o For any integer k > 1 and any subset A of M*, A is definable in M by a
formula of L ifand only ifthere existsa formula F = Flwi, wy, ..., wi] of L
with at most k free variables such that for all elements a\, az, . .., ak of M,

(a1.a2,...,ar) € A ifandonly if M = Flay,ay, ..., akl.

When this happens, we say that such a formula F is a definition of Ain M.

o Anelement a € M is said to be definable in M by a formula of L ifthe subset
{a} is. Any definition of {a} is then called a definition of the element a.

o Forany integer k > 1 and any map ¢ from M* into M, ¢ is definable in M by
a formula of L if and only if there exists a formula F = F[w)], w2, ..., Wk, 2]
of L with at most k + 1 free variables such that for all elements b, a1, az, ...,
ay of M,

¢lay,az,...,ar) =b ifandonly if M = Fla,, a2, ..., a, bl
Such a formula is then called a definition of ¢ in M.
When we consider the graph of amap ¢ from M¥ into M to be the set
{@1,a2,....ak b) € MV b =¢(ar, a2, ...,a)),

we immediately see that such a map is definable in M by a formula of L if and
only if its graph is also, and that the formulas that define the map are the same
ones as those that define its graph.

It is important to note that the definability of a subset of M* or of map from M*
into M depends in an essential way on the language under consideration and on
the structure that accompanies the set M. For example, it may happen that a subset
that is not definable in M by a formula of L becomes definable in an enrichment
of s\1 thanks to a formula of the extended language.

However, when there can be no reason to fear confusion over the subjects of
language or structure, we will be content to speak of a definable subset (or relation)
or function, without further precision.

Example 3.93

e The set M* and the empty set are always definable subsets of M*: the first,
thanks to the formula wy >~ w; and the second, thanks to its negation.

e The set of even integers is definable in the structure (Z, +) by a formula of the
language {g} (g is a binary function symbol): it suffices to consider the formula
Jwogwowo = wi.

Theorem 3.94 For any integer k > |, the set of subsets of M* that are definable

in M by a formula of L is a sub-algebra of the Boolean algebra of all subsets
of M.
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Proof We have justseen that () and M k are definable. Now, if A and B are defin-
able subsets of M¥ and if F = F[wi, wa, ..., wy| and G = Glwy, wy, ..., wy]
are, respectively, definitionsof A and B, itis clear that =+F, (FF A G)and (F Vv G)
are, respectively, definitions for the complement of A in M*, the intersection of A
and B and the unionof A and B. u

Theorem 3.95 Ifk is an integer greater than or equal to | and A is a subset of
M* that is definable in M by a formula of L and if h is an automorphism of the
structure M, then the set A is invariant under h (this means that for all elements
ai, az,...,akof M, if (ar,az, ...,ar) € A, then (h(a1), h(az),...,h(ar)) € A).

Proof Suppose that F = F[w, wy, ..., wy] is a formula of L that defines
A C MK and thatay, az, ..., ax are elements of M. If (a1,ay,...,ar) € A,
then M | Flal,a2,...,ak]; in this case, then for any automorphism 4 of the

structure M, we also have M = F[h(a)), h(a2), ..., h(ax)] (by Theorem 3.72),
which proves that (h(a;), h(a2), ..., h(ak)) € A (because F is a definition of A).
[

This theorem is useful when we want to show that a set is not definable: to do
this, it suffices to find an automorphism of the structure under consideration that
does not leave the set in question invariant.

Toillustrate this, let us prove that no subsets of R otherthan R and () are definable
in the structure (R, <) by a formula of the language {R} (R is a binary relation
symbol). We will argue by contradiction; suppose that there is a subset A C R,
distinct from R and ¢, that is definable by a formula F = F[w] of this language.
Then choose an elementa € A (A isnotempty) and anelementb € R — A(R— A
is not empty). Observe that the map h from R into R which, with every real x,
associates the real x + b — a, is an automorphismof (R, <) which does not leave
A invariant (since h(a) = b), which contradicts the previous theorem.

Next, we will introduce the notion of definability with parameters, which
generalizes the notion we just studied.

We still consider a first order language L and an L-structure M = (M, ...).

Definition 3.96 For any integer k greater than or equal to 1 and any subset A of
MK, A is definable with parameters from M if and only if there exist an integer

m > |, aformula F = Flw, wy, ..., W, 21, 22, ..., zm] of L withat mostk+m
free variables, and m elements by, by, ..., bm of M such that for all elements a,
a, ...,ar of M,

(ai,az,...,ar) € A ifandonly if M = Flay,az,...,ax,b1,b2,...,by].
When this happens, the formula Flw), wy, ..., wg, b1, bz, ..., bwm] is called a
definition of A in M with parameters b\, by, .. ., b,,.

The notion of a map from M* into M that is definable with parameters from
M has an analogous definition.
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For example, every finite subset {a1, a2, ..., ap} of M is definable in M with
the parameters a1, a2, . .., ap thanks to the formula
\ w=xa
I<i<p

We immediately see that to be definable with parameters from M is equivalent
to being definable (in the sense of Definition 3.92) by a formula of the language
L.ps in the structure M7, the natural enrichment of M to Ly, (see Theorem 3.87).

3.7 Models that may not respect equality

Our excursion into this topic will be as brief as possible.

We consider a language that includes the symbol for equality, >~. Let E denote
the theory of L that consists of the following closed formulas (called the axioms
of equality):

e the formula: Vvgvg > vo;
e the formula: VvoVvi (g ~ v; = v] = vo);
e the formula: YvoVvVva((vo = vi A v] X V2) = Vo = 12);

e forevery integer k > | and every k-ary function symbol f of L., the formula:

Vv1...Vkavk+1---Vv2k( /\ Ui2Uk+i:>fUl.--UkaUkH---Uzk);

I<i<k

e forevery integer k > | and every k-ary relation symbol R of L, the formula:

Vv ... VurVoks) ... Voo ((Rm L UE N /\ Vi vk+,-) = Rur+). ..vzk).

1<i<k

It is quite clear that all of these formulas are satisfied in any I.-structure that
respects equality.

Consider an arbitrary L-structure M = (M, . ..) in which the symbol forequal-
ity, =, is interpreted by some binary relation on M that we will denote by 6. We
are going to show that if M is a model of the theory E, then we can define from
M, in a natural way, another model that does respect equality and possesses some
interesting properties.

So suppose that M = E. Then, according to the first three formulas of E,
the relation 6 is an equivalence relation on M thatis, according to the remaining
formulas of E, compatible with the functions and relations of the structure. Let
A denote the quotient M /6 (the set of equivalence classes relative to 6). The
equivalence class of the element ¢ € M will be denoted by Cl(a). We can make
A into an L.-structure A by defining the interpretations of the symbols of Z. in the
following way:

e foreach constant symbol ¢ of L, cA = clicM);
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e foreveryinteger k > | and every k-ary function symbol f of L, TA is the map

from A¥ into A which, toeach k-tuple (Cl(a1), cl(az), ..., cl(ar)) € Ak, assigns

the element Cl(?M (a1,a2,...,ak)); thismakes sense because 6 is compatible
—M

with f~

e for every integer k > 1 and every k-ary relation symbol R of L, EA is the
k-ary relation on A defined by: (cl(ay), cl(az), ..., cl(ak)) € FA if and only

if (a1,a2,...,ar) € RM (again, this makes sense because 6 is compatible
., =M
with R™ ).

We see immediately thatthe L-structure A defined in this way respects equality:
indeed, the interpretation in A of the symbol ~ is the set of pairs (Cl(a), cl(b)) €
A? such that (a, b) € EM, i.e. such that (a, b) € 0, or equivalently, such that
cl(a) = cl(b); this is precisely the diagonal of AZ.

Lemma 3.97 For every formula F = F[vg,vi,..., vs—1] of L and for all ele-
ments ag, ay, - - -, Gn-1, bo, b1, ..., bn_1 of M, we have:

(1*) if (@i, bi) €0 forO <i < n — 1, then
M = Flag, ai, . - .,an—11 if and only if M = Flbo, b1, ..., bn-1);

(2*¥) M = Flag,ai, .- -,an—1]ifandonlyif A = F[cl(ag), cl(ay), ..., cl(an_1)].

Proof We prove these two properties by induction on F. The case for atomic
formulas is settled by the very definition of A. Next, Remark 3.57 allows us to
limit our attention to the induction steps that relate to —, A and 3. It is only this
last one that deserves any effort: so suppose, then, that

F = 3umGlvg, V1, ..., Un_1> Um]-

We may suppose that m > n — 1 1n view of a remark that we have made on many
earlier occasions. Under these conditions, for M to satisfy F[ao, a1, ...,an- 1],
it is necessary and sufficient that there exist an element b € M such that M =
Glao, ai, ..., an—1, b]. Given that G satisfies the lemma (by the induction hypoth-
esis) and that for every b € M, (b, b) € 6 (the first formula of E), if (a;, b;) € 6
for all i, then we may conclude that M k&= Flao,ay, ..., an—1] if and only if
there exists an element » € M such that M = G[bo, b1, ..., bn—1,b]. In other
words, M k= Flao,ai,...,an—1] if and only if M & F[bo,b1,...,bn-1l,
which proves (17). In the same way, we see by the induction hypothesis that
M = Flao,al, . ..,an—1] if and only if there exists an element » € M such that

A E G[(cl(ao), cl(ay), ..., cl(a,-1), cl(b)],
which is equivalent to

(A:vo— Cl(ap), v — cl(ay), ..., vn—1 — d(an-1)) & JunG,
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or again, to

A = F[cl(ap), cl(a1), ..., Cl(an—1)];
this proves property (2*) for F. ]

Theorem 3.98 For a theory T of a language L containing >~ to have a model
that respects equality, it is necessary and sufficient that the theory T U E have an
(arbitrary) model.

Proof [f7 has amodel that respects equality, then E is satisfied in such a model,
as we have already noted just after the definition of E; hence, 7 U E has a model.

If T U E has a model M = (M, ...), then since M is amodel of E, we can, as
above, construct the model A on the quotient of M by the interpretation in M of
the symbol ~. It is a consequence of the preceding lemma that every formula of 7
(recall that these are closed formulas) that is satisfied in M will also be satisfied
in A. So the structure A is a model of T that respects equality. ]

The reader who is interested can show that the second and third formulas in
the list of axioms of equality (the ones that express the symmetry and transitivity
of equality) could have been omitted for they are derivable from the ones that
express compatibility with the relations of the structure (among which can be
found, naturally, the interpretation of ~).
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EXERCISES FOR CHAPTER 3

1. The language L consists of a unary function symbol f and a binary function
symbol g. Consider the following closed formulas:

Fi: 3xdyfgxy >~ fx
Fr: VaVyfegxy >~ fx
Fz: 3JyVxfgxy> fx
Fa: Vx3yfgxy>~ fx
Fs: 3xVyfgxy~ fx
Fe: Vydxfgxy >~ fx.

Consider the four structures whose underlying set is N*, where g is interpreted
by the map (m, n) + —» m + n, and where f is interpreted respectively by
(a) the constant map equal to 103;

(b) the map which, with each integer n, associates the remainder after division
by 4;

(c) the map n +— inf(n? + 2, 19);

(d) the map which, with each integer n, associates 1 if n = 1 and the smallest
prime divisor of n if n > 1.
For each of the six formulas, determine whether it is satisfied or not in each
of the four structures.

2. The language consists of a unary predicate symbol P and a binary predicate
symbol R. Consider the following six formulas:

G1: IxVy3z((Px = Rxy) A Py A —Ryz)

G, : 3IxJz((Rzx = Rxz) = VyRxy)

Gz : Vy(AzVtRtz AVx(Rxy = —Rxy))

Gs: JxVy((Py = Ryx) A Yu(Pu = Ruy) = Rxy))

Gs: VxVy((Px A Rxy)= ((Py A—Ryx) = 3z(mRzx A —=Ryz)))
Ge: VzVudxVy((Rxy A Pu) = (Py = Rzx)).

For each of these formulas, determine whether or not it is satisfied in each of

the three L-structures defined below:

(a) The base set is N, the interpretation of R is the usual order relation <, the
interpretation of P is the set of even integers.
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(b) The base set is g (N) (the set of subsets of N), the interpretation of R is
the inclusion relation C, the interpretation of P is the collection of finite
subsets of N.

(c) Thebase setis R, the interpretation of R is the set of pairs (a, b) € R? such
that b = a?, the interpretation of P is the subset of rational numbers.

. The language L has two unary function symbols f and g.
(a) Findthree closed formulas F, G, and A of L such that for every L-structure

M=(M,T, g), we have

M k= F if and only if f = g and f is a constant map;

M k= G if andonly if Im(f) € Im(g);

M k= H if and only if Im(f) N Im(g) contains a single element.

(b) Consider the following five closed formulas of L:

Fr: Vxfx>~gx
Fr: VxVyfx >~ gy
Fz: Vx3dyfx>=gy
Fy: IxVyfx >~ gy
Fs: 3x3dyfx >~ gy

Find a model for each of the following six formulas:

Fy A—=F F —F| A F3
—F1 N Fy —F3 AN —Fy3 N F5 - F5,
. Let L be a first order language. For every formula F[vo, vi, ..., v] of L, the

expression 3!vg F denotes the following formula:

Jvo(Flvg, v1, - .., U} A VUrp1t (F[Uk415 V1, - -5 U] = Upg1 = Vg)).

o F is read: ‘there exists one and only one vg such that F’.

Note that in any L-structure M = (M, ...), 3w F is satisfied by a k-tuple
(ai, a2, ..., ay) if and only if there exists a unique object a € M such that the
(k + 1)-tuple (a,ay, aa, - .., aq) satisfies F.

Let F[uvg, vi1] be a formula of L. Find a closed formula G of L which is
satisfied in an L-structure M = (M, ...) if and only if there exists a unique
pair (a, b) € M? suchthat (M : vg — a, vy = b) = F. Arethe formulas

G, dlwodluyF, JlvAlygkF

equivalent?

. Let L be a first order language and let A[x, y] be an arbitrary formula of L with
two free variables.
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(a) Is the formula
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satisfied in any L-structure?

(b) Repeat question (a) for the formula

Vx3dyAlx, y] = JyVxAlx, y]

dyVxAlx, y] = Vx3yA[x, y].

(c) Show that for arbitrary formulas with two free variables A[x, y] and B[ x, y],
the following formula is universally valid:

(VxVyA[x, y] = Ix3AyBlx, y]) & xIy(A[x, y] = Blx, y)).

(d) Let F be the formula

VxVy(Alx, y] = Aly,x]) =
((VuVv(Alu, v] = Blu, v]) = IxAy(Alx, y] = Clx, y)))

where A, B and C are arbitrary formulas with two free variables.
Show that there exists a quantifier-free formula G = Gl[x, y] with two
free variables such that F' is universally equivalent to 3x3yG.

6. Show thatiftwo formulas are universally equivalent, then so are their universal

closures.

7. In all of the languages considered in this exercise, R is a binary relation symbol,
* and @ are binary function symbols, ¢ and d are constant symbols.

We will write x @ y and x * y respectively, rather than &xy and xxy (with

a reminder that this necessitates the use of parentheses when writing terms).

x? will be an abbreviation for x * x.

(a) In each of the following six cases (1 < i < 6), a language L; and two
L;-structures .A; and B; are given and you are asked to find a closed formula
of L; that is true in A; and false in B;.

(1) Ly ={R}
(2) L2 = (R}
(3) L3 = {*}
(4) La = {Cs*
(5) Ls ={c. d,
(6) Le = {R}

}

@D, *}

Al = (N, <)

A2 = (Q, <)

A3z = (N, x)

As = (N, 1, x)

As = (R, 0,1, +, x)
A = (Z, =2)

By = (Z, <)

B =(Z,<)

B3 = (5o (N), N)

Bs = (Z, 1, x)

Bs =(Q,0.1, +, x)
Be = (Z, =3)

(x and + are the usual operations of multiplication and addition, N is the
operation of intersection, =, is the relation of congruence modulo p.)

(b) Foreach of the following closed formulas of the language {c, &, *, R}, find
a model of the formula as well as a model of its negation.

Fir: YuVvax(—v>=c=>u® (v*x) x=c)

F: VYuVvoVwdx(~rw>c=>ud®d xx)d (w *xz) >~ C)
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F3: VxVyWz(Rxx A ((Rxy AN Ryz) = Rxz) AN(Rxy = Ryx))
Fi: VxVyWz(Rxx = Rx %z y*2)
Fs: VxVy(Rxy = —Ryx).

8. The language L consists of a single binary predicate symbol, R.
Consider the L-structure M whose base setis M = {n € N: n > 2} andin
which R is interpreted by the relation ‘divides’, i.e. R is defined for all integers
m and n > 2 by the condition: (m, n) € R if and only if m divides n.
(a) Foreachofthe following formulasof L (with one free variable x ), describe
the set of elements of M that satisfy it.

Fi: Vy(Ryx=x>~y)

Fp: VYyWz(Ryx AN Rzx) = (RyzV Rzy))
F3: VyVz(Ryx = (Rzy = Rx2))

Fs: Vt3y3dz(Rtx = (Ryt AN Rzy AN —Rtz2)).

(b) Write a formula G[x, y, z, t] of L such that for all a, b, ¢c and d of M, the
structure M satisfies G[a, b, c, d] if and only if d is the greatest common
divisor of a, b and c.

(c) Let H be the following closed formula of L:

VxVyVz((At (Rt xARty)AJt(RtyARtz)) = AtVYu(Rut = (RuxARuz))).

(1) Find a prenex form of H.

(2) Isthe formula H satisfied in M?

(3) Give an example of a structure M’ = (M’, R) such that when M is
replaced by M’ in the previous question, the answer is different.

9. Let L be the first order language which has one unary relation symbol €2 and
two binary relation symbols / and R.
Consider the following formulas of L:

Fy: Vx—Rxx

F: Vx(2x = —Rxx)

F3: VxVyVz((RQx A Qy Alxz A 1zy) = 22)

Fa: VYxVyVz((2x A Qy AN Qz AN Rxy N Ryz) = Rxz)
Fs5: VxVy(Q2x N Q2y) = (—mRxy VvV —Ryx))

Fg: VxVy((S2x A Rxy) = Qy)

F7: VYxVy(Q2x A Ryx) = Qy)

Fg: Vx3dydz(Ryx A Rxz)

Fo: Vx3ydz(Q2x = (Ryx A Rxz A Qy A Q22z))

Fio: VxVy3dz((©2x A Qy A Rxy) = (Rxz N Rzy N Q22)).

(a) Consider the L-structure M whose base set is g (N), in which the inter-
pretation of €2 is the unary relation ‘... is infinite and its complement is
infinite’, the interpretation of I is is the inclusion relation, and the pairs
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10.

11.

12.

(A, B) that satisfy the the interpretation of the binary relation R are those
for which A € B and card(A) = card(B — A) (the notation card(X)
denotes the cardinality of a set X; see Chapter 7).

For each of the formulas above, determine whether it is satisfied ornotin
the structure M.

(b) We add a new unary predicate symbol D to the language. [sit possible to
enrich the structure M with an interpretation of D such that the following
four formulas are satisfied?

G): VxVy((Dx A Dy) = (Ixy Vv Ilyx))

Gy : VxVy3dz((Dx A DyAlIxynAn—-x>y) =
(DzAIxzANIzZy AN —x >~ 2 A—y = 2))

G3: Vx3dydz(Dx = (DyADzANIxyNIzx A—x >~y N—x 7))

Gs4: dxDx

Let L be a language and let F' be a formula of L.

The spectrum of F is the set of cardinalities of finite models o f F’; i.e. it is
thesetof natural numbers n such that F'hasa model whosebase sethas exactly
n elements; it is denoted by Sp(F’).

(a) For each of the following subsets of N, exhibit, when this is possible, an
example of a language L and a closed non-contradictory formula F of L
whose spectrum is the subset in question.

(DY AN, BNy DireN' :@peNn=2p)}
) {neN:@peNn=pHk ©3) @DI1,2 34}
B)N-—-{O,1,...,k};

(9) the set of non-zero composite natural numbers;

(10) the set of prime numbers.

(b) Show that any formula whose spectrum is infinite has at least one infinite
model.

Show that if all the models of a non-contradictory theory are isomorphic, then
the theory is complete.

Let L be a first order language, let M be an L-structure and let A be a subset
of the base set of M.
(a) Show that if A is not empty, there exists a unique sub-structure A of M

such that:

(1) the base set of .4 includes A;
(2) every sub-structure of M whose base set includes A is an extension

of A.
A is called the substructure of M generated by A.

(b) Show that, when A = ), there may not be a substructure generated by A.
Give an example, however, in which one does exist.



(c)

(d)

(e)
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Suppose that L contains no function symbols of arity > 1. What is the
substructure generated by a subset A in this case?

A sub-structure A of M is said to be of finite type if and only if N is
generated by a non-empty finite subset of M.

Let F be a closed universal formula of L. Show that F is satisfied in M
if and only if F is satisfied in every sub-structure of M of finite type.

Give a counterexample to (d) for a formula that is not universal.

13. The language L consists of one constant symbol ¢ and two unary function
symbols f and g. The theory 7 consists of the following formulas:

(a)

(b)

H,: Vvoffvo == fuo

Hy: VYvogguo = guo

H3: Vvo(fguvo=>~cA gfvo = ¢)

Hy: VooVui((fvo = fur A gug = guy) = vg = v))

Hs: VYuiVva((fvl = v) A guy 2) = Fuo(fvo =~ v A gup = v2)).

Show that for any term ¢ of L, at least one of the following cases applies:

oTH"t ~c;

o there exists a variable x such that 7 H* ¢ >~ x;
o there exists a variable x such that 7 =* t >~ fx;
o there exists a variable x such that 7 +* ¢t ~ gx.

Let A and B be two non-empty sets with ap € A and bp € B. We denote
by M (A, B, ao, bo) the L-structure whose underlying set is A x B, and in
which c is interpreted by (ao, bo), f by the map (a.b) — (a. bo) and g
by the map (a, b) — (ao, b). Show that M (A, B, ao, bo) is a model of 7.

(c) Show that the following formulas are consequences of 7°:

(d)

Hg - fcx~c

H7: gc>~c

Hs : Yvo(fuvp = vo & guo = ¢)

Hoy : Yvo(gup =~ vo & fvo = ¢)
Hio: VYw(fw =~ vg < v fur = vg)
Hi1: VYvo(guo =~ vo & Jvjgv) == vo)

Hip : Vvo((fvo = vo A gug = vg) < vg = ©)
Hiz: VYvoVui(fuvg = gvi = fuvo = c).

Given four non-empty sets A, B, C and D and fourelementsao € A,bo € B,
co € C,and dp € D, show that if A and C are equipotent and if B and
D are equipotent (two sets are called equipotent if there exists a bijection
between them), then the structures M(A, B, ao, bo) and M (C, D, co, do)

are isomorphic.
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(e) Let M = (M, «, @, ¥ ) be a model of T. Set
A={xeM:px)=x}, B={xeM:y(x)=x}, ag=bg=0.

Show that M is isomorphic to the structure M (A, B, ag, bg).

For every integer n > 1, write a closed formula F,, (respectively G,) of
L thatis truein M if and only if the set A (respectively, B) contains at least
n elements.

Show, for all integers n and p > 1. that the theory

Tnp =T U{F,, Gp’ —Fui1, ""Gp+1}

is complete.

(f) Let F be a closed formula of L that is satisfied in every infinite model of 7.
Show that there exists at least one integer n such that T U {F, v G} -* F.
Is the theory 7 U {F} V Gy : k € N*} complete?
The last two questions make use of concepts that will be introduced only
in Chapters 7 and 8.

(g) Describe all the countable models of 7.

(h) Isthetheory T’ = T U{Fy : k € N*}U{G, : k € N*) complete? (To answer
this question, we will need Vaught’s theorem (see Volume 2).)

14. The language L consists of one unary function symbol f.
We let A denote the following formula:

Vx(fffx >~x A —fx = x).

(a) Show that the following formula is a consequence of A:
VxIyVz(—ffx2xA~ffx> fxnN fy~xn(fz=x=z2=Yy)).

For every integer n € N*, we let F,, denote the following formula;

3x13x2...3anx<( /\ —-‘x,-:xj)/\( \/ x:x,-)).

I<i<j<n | <i<n
(b) Show that, forevery integer n € N*, the formula A A F,, has a model if and
only if n is a multiple of 3.
(c) Show that, for every p € N*, the theory {A, F3,} is complete.

(d) Exhibit a countable model of the formula A (i.e. a model of A whose base
set is in bijection with the set of natural numbers).

(e) Show that all the countable models of A are isomorphic.

15. Thelanguage L consists of twounary function symbols + and /. For every term ¢
of L, set r% = 1% =t and, for every integer k, r**1t = ri*t and ¥t 1t = 1¥s.
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Let F be the formula

VxVyJudv(((rx ~ryvix ~ly) = x>~ y) A

(x ~runx =Ilv)AN (—rx >Ilx Arix = lrx)),
and for every pair (m, n) of natural numbers, let F,,,, be the formula
Vx(=r™"x ~ x A —r"x >~ ["x).

Let 7 be the theory consisting of F' together with the set of all the F;,, such
that (m, n) # (0, 0).
(a) Show that for every term ¢ of L, there exists a variable x and integers m and
n such that
T F* Vx(t = r"™1"x).

(b) Show that the structure M whose underlying set is Z x Z and where r
and [/ are interpreted respectively by the maps

sy . (i, j) — (i, j+ 1) (right successor)
sy 2 (i, j)v=> (i + 1, j) (eft successor)
is a model of 7 it will be called the standard model of 7.

(c) Show that for any two integers A and B, the map &,y from Z x Z into
Z x 7 defined by hap(i, j) = (i +a. j + b) is an automorphism of Mo.

(d) Which subsets of Z x Z are definable in the structure Mg by a formula
of L?

We will allow the following abuse of notation: for every integer n > 1, we will
letO, 1, ..., n—1 denote the elements of Z/n Z (i.e. the respective equivalence
classes modulon of O, 1, ..., n — 1) and will let + denote addition in this set.
(a) The language L has a single unary function symbol f.

Consider the following L-structures:

M| =(Z/nZ,x + x +1);
My =(Z/nZ,x — x +2).
For each structure, determine which subsets of the underlying set arc
definable.
(b) The language L' has a single binary function symbol g.
Consider the following L’-structures:
Ny =(Z/3Z, (x,y)+—> x+y);
N1 =(Z)6Z, (x, y) +> x + y);
N = (R, (x,y) t= xy).

For each structure, determine which subsets of the underlying set arc
definable.
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17.

18.

(c) The language L” has a single binary relation symbol R.
Consider the L”-structure (R, <}).

(1) Which subsets of R are definable in this structure?
(2) Which subsets of R? are definable in this structure?

Given an integer n > 2 and a binary relation S on a set E, a cycle of order
n (or n-cycle) for S is an n-tuple (ay, ay, ..., a,) of elements of E satisfying:
(ai,az) € S,(az,a3) €S, ...,(an_1,an) € S and (a,,a) € S. For example,
the usual strict ordering on R has no n-cycles, whereas the binary relation on the
set {1, 2, 3} whose graph is {(1, 2), (2, 3), (3, 1)} has 3-cycles but no 2-cycles.

In the first order language L that has a single binary relation symbol R,
consider, for every n > 2, the following formula F;:

Vxi1Vxg ... Vx,—(Rxixg A Rxpx3 A -+« A Rx,_ixp A Rxpxy).

Set T ={F,:nelN,n>2}.

We say that an L-structure (M, R) is cycle-free if for every n > 2, R has no
n-cycles; in the opposite case, we say that the structure has cycles. It is clear
that the models of T are the cycle-free L-structures.

(a) Forevery n > 2, exhibit a model of of the formula

FoAnF3nN---NFy AN—F,y.

(b) Show that if G is a closed formula of L that is a consequence of 7, there
exists at least one integer p > 2 such that G is satisfied in every L -structure
in which the interpretation of R has no cycles of order less than or equal
to p.

(c) Show that every closed formula that is a consequence of 7 has at least one
model that has cycles.

(d) Show that 7 is not equivalent to any finite theory. (Hence the concept of a
cycle-free binary relation, which 7 axiomatizes, is not finitely axiomatiz-

able).

Recall that an order relation on a set E is a well-ordering if and only if every
non-empty subset of E has a smallest element with respect to this order. This
exercise shows that this concept is not pseudo-axiomatizable.

Let Lo be the language whose only symbol is a binary relation symbol R and
let L be a language that enriches Lo. Show that there does not exist a theory 7
of L with the following property: for every Lg-structure M = (M, p), p is a
well-ordering of M if and only if M can be enriched to an L-structure that is a
model of 7.

Todo this, use the language L’ obtained from L by adding a countably infinite
set of new constant symbols, cg, ¢y, ..., Cp, - .. (pairwise distinct) and, forevery
integer n, consider the following closed formula F, of L’

RCp 16y A G4 2 Cp-
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Let L be a first order language and let L’ be the language obtained from L by

adding new constant symbols c1, ¢2, .. ., Ck-

Consider a theory T and a formula F[x, x2,...,x;] of L.

Show that if the closed formula F(c), c2, ..., ck] of L’ is a consequence of
T (considered as a theory of L), then T H* Vx1Vx2...Vxx F[x), x2, - - - s X

(this conclusion concerns only the language L).

We are given a first order language L, an L-structure M = (M,...) and a
theory 7" of L.
Recall that A (M) denotes the simple diagram of M (Definition 3.89).
(a) Assume that no extension of M is a model of 7. Show that there exists «
quantifier-free formula G[x1, x2, ..., x4] of L such that

T H* VxVx2...Vx,G[x1,x2,...,xn] and
M FE VxVx2...Vx,Glx1,x2,...,Xnl.

(Consider the theory 7" U A (M); use Theorem 3.91 and Exercise 19).

(b) Let U(T) denote the set of closed universal formulas of L that are conse -
quences of 7.
Show that for the existence of an extension of M thatisa modelof 7, it
is necessary and sufficient that M be a modelof U(T).
(This result is a special case of what is called the extension theorem).

(c) A sub-structure of M that is generated by a non-empty finite subset of A/
is called a sub-structure of finite type. (The sub-structure of M generated
by a non-empty subset A C M is the smallest sub-structure of M whosc
base set includes A: see Exercise 12.)

Show that for the existence of an extension of M that is a model of 7', it
is necessary and sufficient that every sub-structure of M of finite type have
this same property.

Let L be a first order language and let 1 denote the set of formulas of L that
have at most one free variable. Given an L-structure M = (M, ...) and an
element a € M, the set 6(a) of formulas in Fi that are satisfied in M by a is
called the type of a in M (or simply, the type of a if there is no ambiguity;
this vocabulary will be taken up again in Chapter 8). In other words:

0(a) = {F[v] € F, : vis avariableand M = Flal}.

(a) Show that if all the elements of a subset A € M have the same type in
an L-structure M = (M, ...), then every subset of M that is definablc
in M by a formula of L must either include A or be disjoint from A (sec

Definition 3.92).

(b) Let h be an automorphism of an L-structure M = (M, ...), and let a be
an element of M. Show that a and h(a) have the same type.
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(c) R, f, g and c are, respectively, a binary relation symbol, a unary function
symbol, a binary function symbol and a constant symbol. In each of the
following examples, find two elements a and b of the proposed model
whose types are distinct, or show that this is not possible.

Ly ={R} M =(R,<);
Ly={f}) My=(N,n—n+1);
L3={f} Mz=(Z,n+—>n+1);
La=(g,c} Ma=(Z,+,0);
Ls={g} Ms=(Z,+).

(d) Let T be atheoryof L and let Fy, F3, ..., F, be n formulas of 7| (n > 1).
Suppose that the formula

G = Vvo\/vl( /\ (Filvgl < Filv1]) = vo = v;)

|<i<n

1s a consequence of 7.
Show that every model of 7" has at most 2” elements.

(e) Let S be a theory of L that has at least one infinite model.

Show thatthere exists a model M = (M, ...) of S such that M contains
at least two elements that have the same type.

(Hint for an argument by contradiction: enrich the language with two
new distinct constant symbols and apply the compactness theorem to an
appropriate theory in the enriched language, then make use of Exercise 19
and the preceding question.)

(f) Give an example of a language L and a theory 7 such that:
e there exists at least one model of 7 of cardinality > 2;
e there is no model of 7 that contains two distinct elements of the same
type.
(g) Give an example of an infinite model of a finite language L that contains
no distinct elements of the same type.



4 The completeness theorems

The formalization that we have implemented thus far allows us to represent math-
ematical statements, or at least some of them, in the form of sequences of symbols.
We will now pur sue further in this direction and formalize proofs. There are many
ways of doing this and, let us admit it from the start, the one we have chosen
comes with a certain number of inconveniences; in particular, it does not properly
reflect the manner in which proofs are conceived in the minds of mathematicians.
Moreover; it does not lend itselfwell to the analysis of proofs, a topic that is known
as proof theory and that we will discuss only briefly in this text. In its favour;, our
method is a bit closer to the way in which proofs are actually written and, primar-
ily, it requires the introduction of few prerequisites. That is why it appeared to us
that this approach is the easiest to understand upon first exposure.

A formal proof (or derivation) is a sequence of formulas in which each is
justified either because it is an axiom or because it can be deduced from for-
mulas that precede it in the sequence. It is quite clear that, provided we do things
correctly, a formal proof can lead only to formulas that are universally valid. The
converse of this assertion, namely that every universally valid formula has a for-
mal proof, is what we will call a completeness theorem; indeed, such a result wili
show that the axioms and rules that we have allowed ourselves are sufficiently
strong, or, in other words, that they are complete. In Section 4.2 we will present a
proof of this that uses a method due to Henkin, and from this we will extract an
important, purely semantic consequence, the compactness theorem. The purpose
of Section 4.3 is to describe Herbrand’s method which reduces the satisfiability of
aformula of predicate calculus to the satisfiability of an infinite set of propositionai
formulas.

Anessential aspect of these notions is their effective character. For example, here
is a natural question: can we find an algorithm that produces proofs of theorems?
We will see later, in Part 2, Chapter 6, how to think about this question in generai
terms. In Section 4.4, our interest turns to a restricted class of universal formulas
(the universal clauses) and we will introduce a new type of proof; this is the method
of resolution. This method is better suited to implementation on computers (it is
the basis for the language PROLOG). We will be content to sketch the required
algorithms without giving the details of a potential realization.
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In this chapter, we will not speak of equality; thus, we will not assume that
the equality symbol is part of our language and, when it is, we will not assume
that the models we construct necessarily respect equality. However, thanks to
Theorem 3.97, we can reduce to a model that does respect equality.

To avoid misunderstandings, the word ‘derivation’ will be reserved, throughout
this chapter, to mean formal proof. The word ‘proof’ by itself will be used to denote
what is necessary to prove the stated theorems; so we could, to conform with what
was said in the introduction, call these ‘meta-derivations’.

4.1 Formal proofs (or derivations)
4.1.1 Axioms and rules

In mathematics, to prove a theorem is to derive it from propositions given in ad-
vance, called axioms, according to exactly specified rules. It is this notion of proof
that we will formalize in this section. What the axioms are and what the rules are
must, therefore, be made absolutely precise. Let us begin with the rules. These are
rules that allow us to deduce a formula from one or more other formulas. For the
notion of derivation that will be presented here, there are two deduction rules:

Definition 4.1 THE DEDUCTION RULES

e Modus ponens: from the two formulas F and F = G, modus ponens allows
us toderive G.

o The rule of generalization: if F is a formula and v is a variable, the rule of
general