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Design classes
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Design classes are classes whose specifications have 
been completed so that they can be implemented

● Analysis is about what the system should do
● Design is about how that behavior may be implemented
● Design classes come from 

○ The problem domain, via refinement of analysis classes

○ The solution domain, where you can find utility classes, 

reusable components, GUI frameworks, etc
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Design classes can be refined from analysis 
classes
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In the analysis classes we only had a class name, 
some high-level attributes and operations
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In the design classes we have a complete set of 
attributes fully specified with name, type, visibility (and 
optionally a default value)
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Note:
The - before the attribute 
name symbolises the 
private visibility modifier
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In the design classes we have a complete set of 
operations fully specified with name, parameter list, 
return type, and visibility modifier
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Note:
The + before the operation 
name symbolises the 
public visibility modifier
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Well-formed design classes are passed to 
developers, or used directly for code generation

● A class should be assessed from the perspective of its 
users

● To be well-formed, the class should
○ be complete and sufficient
○ be primitive
○ have a high cohesion of its features
○ have a low coupling with other classes
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Completeness and sufficiency

● The public operations of a class define a contract 
between the class and clients of the class

● A complete and sufficient class gives the class users 
of the class exactly what they expect - no more, no 
less
○ Completeness - a class should satisfy all 

reasonable client expectations
○ Sufficiency - a class should be as simple and 

focused as possible
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Primitiveness

● A class should not offer multiple ways of doing the same 
thing
○ This is confusing to clients

○ This can lead to future maintenance and consistency 
problems

● Services should be:
○ Simple 

○ Atomic

○ Unique

● Aim for the simplest and smallest set of operations

● Add to this set only if you have a proven case for doing so
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High cohesion

● Each class should capture a single, well-defined abstraction, 

using the minimal set of features

● All features (operations and attributes) are designed to 

implement a small, focused set of operations

● Cohesive classes tend to be
○ Easy to understand
○ Easy to reuse
○ Easy to maintain
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Low coupling

● A class should be associated to a minimal number of 
other classes to allow it to fulfill its responsibilities

● Many associations come directly from the analysis mode
● Other associations are introduced by implementation 

constraints, or by the wish to reuse code - the latter need 
to be examined carefully

● Some coupling is desirable
○ High coupling within a subsystem indicates that the 

subsystem is cohesive
○ High coupling between subsystems indicates that the 

system is likely hard to maintain and evolve
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Inheritance

● During analysis, you should only use inheritance 
where there is a clear and unambiguous “is-a” 
relationship between analysis classes

● During design, you may also consider using 
inheritance in a tactical way, to reuse code
○ Inheritance is used here to facilitate the 

implementation of the child class - use this with 
discretion
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Refining analysis relationships
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Analysis associations must be refined to design relationships 
that are implementable in the target OO language

● Many relationships between analysis classes are not 
directly implementable as-is
○ Bi-directional associations are not directly supported
○ Association classes are not directly supported
○ Many-to-many associations  are not directly 

supported
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Refinements

● Associations to aggregation, or composition 
relationships, where appropriate

● Implementing one-to-many associations
● Implementing many-to-one associations
● Implementing many-to-many associations
● Implementing bidirectional associations
● Implementing association classes
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Desirable features of design associations

● Mandatory features for design associations
○ navigability
○ multiplicity on both ends

● Recommended features for design associations
○ association name, or
○ role name at least on the target end
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Aggregation and composition

18
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Aggregation and composition

Aggregation
A loose type of relationship 

between objects (e.g. a 

computer and its peripherals)

19

Composition
A very strong type of 

relationship between objects 

(e.g. a tree and its leaves)
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Aggregation
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Aggregation is a whole-part relationship

● A type of whole part relationship where
○ The aggregate is made of many parts

○ The aggregate uses services of its parts

○ The aggregate plays the role of the whole

○ If you only have navigability from the whole to the part, the 

part is not even be aware that it is part of the whole
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Aggregation example semantics

● A computer may be attached to 0 or more printers

● At any one point in time, a printer is connected to at most 

one computer

● Over time, many computers may use a given printer

● The printer may exist even if there are no attached 

computers

● The printer is, really, independent from the computer

22



MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Aggregation semantics summary

● The aggregate can sometimes exist independently 
from the parts, sometimes not

● The parts can always exist independently of the 
aggregate

● The aggregate is, in some sense, incomplete if some 
of the parts are missing

● It is possible to have shared ownership of the parts by 
several aggregates

23



MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Aggregation is transitive
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Aggregation is asymmetric - no object can be 
part of itself
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This model assumes that although 
products can be composed of other 
products, these are all different products 
and the asymmetry constraint is 
preserved.
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Association is symmetric - an object can be 
associated to itself
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Composition
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Composition is a stronger form of aggregation

● Like aggregation, it is a whole-part relationship, transitive and 

asymmetric

● Unlike aggregation, in composition the parts have no 
independent life outside of the whole

● In composition, each part belongs to at most one and only one 
whole

● If you destroy the whole object, you also destroy all its parts
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Composition semantics

● The parts can only belong to one composite at a time - there is 

no possibility of shared ownership of a part

● The composite has sole responsibility for the disposition of all 

its parts - this means responsibility for their creation and 

destruction

● The composite may release parts, provided responsibility for 

them is assumed by another object

● If the composite is destroyed, it must either destroy all its parts 

or give responsibility for them over to some other object
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Aggregation vs composition

Aggregation
You may form reflexive 

aggregation hierarchies and 

networks - an object can be part 
of more than one aggregate

30

Composition
You may only have reflexive 

composition hierarchies - an 
object can only be part of one 
composite at any point in time
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Composition and attributes: choose the most adequate for 
increased clarity, usefulness and readability of the model

● A part in a composite is equivalent to an attribute
○ An attribute can be seen as a composition relationship between 

the composite class and the class of the attribute

● However, we do use both ways of expressing the same thing, 

often in the same diagrams. Why?
○ Attributes may be of primitive data types. You could stereotype 

them as <<primitive>>, but this would just clutter the model, so 
primitive type attributes are always modelled as attributes

○ There are several utility classes, like Time, Date, or String, that are 
used very often. Again, although you could model these as well, 
this would clutter the diagram, so these too, are modelled as 
attributes
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Refining analysis relationships
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Analysis associations should be refined into 
aggregation, or composition, when possible

● Redefine associations into aggregation or composition, where 

possible
○ The exception is when there would be a cycle in the aggregation graph

● Add multiplicities and role names to the association, if they are 

absent

● Decide which side of the association is the whole, and which is the 

part

● Look at the multiplicity of the whole side
○ If it is 0..1, or exactly 1, you may be able to use composition
○ Otherwise, use aggregation

● Add navigability from the whole to the part
○ Design associations must be unidirectional
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One-to-one associations often lead to 
composition, or even an attribute
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Many-to-one associations lead to aggregation, provided 
there are no cycles in the aggregation graph
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One-to-many associations

● There is a collection of objects on the part side of the 
relationship
○ To implement it, you either use native collection 

support
■ An array
■ A collection class
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Collections

● A class whose instances specialize in managing collections of objects
● Collection classes typically support

○ adding objects to the collection

○ removing objects from the collection

○ retrieving a reference to an object within the collection 

○ traversing the collection, by visiting its objects one by one - an iterator
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Strategies when modelling with collections

1. Model the collection explicitly
2. Use a tagged value
3. Specify the desired semantics rather than an 

implementation class
4. Leave it to the programmers
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1. Model the collection explicitly

● Advantage - it is explicit

● Disadvantage - adds a lot of clutter to the model
○ Choice of collection class is usually a tactical programming decision - 

leave it to the programmer to decide
○ If, for some reason, the choice of collection class is strategic design 

rather than a tactical decision, then specify it
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2. Use a tagged value

● Specify how each one-to-many association should be implemented

● Add a tagged value to the association specifying the code generation 
properties for each one-to-many association
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3. Specify the desired semantics rather 
than an implementation class

● You can specify the semantics of the collection using a property 

tag, leaving the implementation details to the programmer

○ Advantages: concise, giving precise enough information to 

the programmer

○ Disadvantage: not enough for automatic code generation
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Properties can be combined

42

Basic Property Semantics

{ordered} Elements in the collection are maintained in a strict order

{unordered} There is no ordering of the elements in the collection

{unique} Elements in the collection are unique - no repeated objects

{nonunique} Duplicate elements allowed in the collection

Combined Property OCL collection (other languages have something similar)

{unordered, nonunique} Bag

{unordered, unique} Set

{ordered, unique} OrderedSet

{ordered, nonunique} Sequence
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What if you want a Map?

● Maps are optimized to quickly return a value, 

given a key

● UML does not have a standard way of 

representing maps

● You can still represent a map with a tagged 

value, but it is a good idea to add a note to 

your diagram explaining it, as it is not standard

○ {map, keyname} (this is implementation 

agnostic)

○ {HashMap} (this uses a Java HashMap)

○ {SortedMap} (this uses a Java SortedMap)

○ ...
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4. Don’t bother refining one-to-many collection 
classes - leave it to the programmers

Hey! hey!
Don’t bother,

undefined, undefined, undefined, undefined...
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Reified relationships

45
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Reification means to make concrete, or real

46

● You need to reify the following analysis relationships, as they 

are not supported by common OO languages

○ many-to-many associations

○ bidirectional associations

○ association classes
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Many-to-many associations

● Supported by some object databases
● Not supported directly in most OO languages

○ They need to be reified into normal classes, aggregations, compositions, and 

dependencies

● In analysis you could be vague about ownership and navigation details
● In design, you need to be precise
● In this particular example, we opted by a resource-centric design
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Bidirectional associations

● Not supported directly in most OO languages
○ We need to reify the bidirectional analysis association into two unidirectional 

associations, or dependencies

○ Remember to keep the asymmetry relationship - an object may not be part of 

itself, in aggregation or composition
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Association classes are an analysis artifact - 
they are not supported by OO languages
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You decide which side of the association plays 
the role of the whole, and which plays the part
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The association class is turned into a class that serves 
as a “middle man” between the associated classes
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Use a combination of composition and aggregation (or even 
dependency, to capture the association class semantics
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You can keep the semantics of a unique pair by 
adding a note with the appropriate constraint

53



MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

Aggregation vs inheritance

54



MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

Inheritance is the strongest form of coupling 
between classes - it is an inflexible relationship

● Inheritance is the strongest form of coupling between classes

● Encapsulation is weak within the class hierarchy

○ Changes in a base class impact strongly on its children

● Inheritance is inflexible

○ Inheritance relationships are fixed at compile time

○ In contrast, aggregations and compositions can evolve at 

runtime
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What is wrong with this diagram?
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What if you want to promote John to become a 
manager? You can’t change its class at runtime!

57



MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

You can create a new Manager for representing John, copy all the 
relevant data from John the Programmer to John the Manager, 
and add John the Manager to any relevant collection
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Finally, delete John, the programmer
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This process was cumbersome, because we 
used the wrong abstraction
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Is an employee just his job, or is it rather that an 
employee has a job?

● This is a common modelling 
mistake. Subclasses should 
always represent a special kind 
of rather than a role played by.

● A job is a role played by an 
employee and does not really 
indicate the kind of employee.

● That said, maybe there are 
several kinds of jobs in a 
company and these would be 
better candidates for an 
inheritance hierarchy.
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Using aggregation, you can get the correct 
semantics and make your model more flexible!
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Now, you can promote John to Manager with a 
simple assignment
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Multiple inheritance
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With multiple inheritance, a class may inherit 
features from several super classes
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Multiple inheritance allows a class to have 
more than one parent

● This is not supported by all programming languages 
(e.g. Java and C# do not support it)

● All parent classes must be semantically disjoint (i.e. 
orthogonal), to avoid unforeseen interactions among 
them

● The “is kind of” and substitutability principles must 
apply between a subclass and all its superclasses

● The superclasses should have no  parent in common, 
to avoid a well-known anti-pattern - the multiple 
inheritance diamond
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67

Diamonds are not a girl’s best friend. 
Not if she really is a class model...
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Which implementation of equals() should 
Button use? 

● Languages supporting 

multiple inheritance, such as 

C++, have language-specific 

solutions to mitigate this 

problem

● Other languages, such as Java, 

or C#, do not support multiple 

inheritance, to prevent this 

kind of problem
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How to properly use multiple inheritance?
With a Mixin!

● Mixin classes are designed to be “mixed in” using multiple 

inheritance

● Mixins provide a safe and powerful idiom

● In this example, Dialer is a mixin. All it does is to dial a phone 

number. Not too useful on its own, but it provides a widely used 

service in a cohesive package, being therefore a good candidate 

for reuse.
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Inheritance vs interface realization
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Inheritance vs interface realization

● With inheritance, the inheriting class gets
○ interface - the public operations of the base classes
○ implementation - the attributes, relationships, protected and private 

operations of the base classes

● With interface realization, the implementing class gets
○ interface - a set of public operations, attributes and relationships with no 

implementation

● Both inheritance and interface realization define a contract that 
subclasses and implementing classes must implement

● Interface realization is useful when you want to define a contract but 
are not concerned about the implementation - this is more flexible and 
robust than inheritance
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Templates
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We can use templates to parameterize a class

● Instead of defining the actual types of attributes, operation 

return values and operation parameters, we can define those as 

placeholders, or parameters

● These placeholders are then replaced by actual types to create 

new classes
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In this example, BoundedArray is <<bind>> to specific 
instantiated classes: IntArray and StringArray
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Same example, BoundedArray is <<bind>> to specific 
instantiated class: in this case, a String
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Nested classes
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A nested class is a class inside a class.

● The nested class is only accessible by its outer class, or by objects 

contained by the outer class

● These classes are, in general, only used in design time

● In programming languages, such as Java, nested classes are often 

used for event handling
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Did you really understand Design 
Class Diagrams? Test yourself at:
http://elearning.uml.ac.at/
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Structured classifiers
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We can explore the relationship of a composite 
classifier with its internal parts

● This may help to
○ Design a class

○ Design a use case

○ Design a subsystem

● Supports focusing on the internal works of the 
corresponding classifier
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A structured classifier is a classifier that has an 
internal structure

● The structure is modelled as parts that are joined by 
connectors

● The interaction of a structured classifier is modelled 
by its interfaces and ports
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A part is the role that one or more instances of a classifier 
may play in the context of the structured classifier

A part contains:

● Role name
○ Descriptive name for the role that instances play in the context 

of a structured classifier

● Type
○ Only instances of this type (or a subtype of this type) can play 

the role

● Multiplicity
○ The number of instances that can play a particular role at any 

given moment
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Connectors represent relationships between 
parts

● A connector indicates that parts can communicate with each 

other

● There is a relationship between the instances playing those 

parts over which communication can occur

● Relationships may map to associations between the classes, or 

even some ad hoc relationship for temporary collaboration to 

perform some task

● Connectors and parts only exist within the context of a 

particular classifier
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Structured classifier syntax
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Structured classifier syntax

● The parts collaborate in the context of 

the structured classifier

● The parts represent roles that instances 

of a classifier can play in the context of 

the structured classifier
○ The parts do not represent classes

● The connector is a relationship between 

two parts indicating that the instances 

playing roles specified by the parts can 

communicate in some way

● Focus on internal implementation and 

external interface
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Structured class example - a library 
management system
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There are two types of borrowers: students and 
staff
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Students can borrow up to 4 books
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Staff can borrow up to 8 books
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Only one librarian can be logged onto the 
system at any particular time
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Now, let us zoom into the LibraryManager and 
have a look at its implementation
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From the perspective of the LibraryManager, there 
are two types of borrowers: students and staff
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Students can borrow up to 4 books at a time (studentLoan).
Staff can borrow up to 8 books at a time (staffLoan).
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There are several librarians, but only one can be logged on at 
any given time
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Some association roles may map to part roles

● The roles played by instances in LibraryManager can differ from 

the roles classes play in their associations with LibraryManager, 

due to refinement
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Borrower class has the role borrowers

● This is refined into a more specific role played by the Borrower 

subclass StudentBorrower, for students
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Borrower class has the role borrowers

● This is refined into a more specific role played by the Borrower 

subclass StaffBorrower, for staff

98



MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

LibraryManager can also be represented in its 
own composite structure diagram
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Did you really understand Design 
Class Diagrams? Test yourself at:
http://elearning.uml.ac.at/
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