
MDS 2018/19 © Departamento de Informática, FCT/UNL 6 – Activity Diagrams

Module

Design Class Diagrams

Vasco Amaral
vma@fct.unl.pt

1

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

Design classes

2

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

Design classes are classes whose specifications have
been completed so that they can be implemented

● Analysis is about what the system should do
● Design is about how that behavior may be implemented
● Design classes come from

○ The problem domain, via refinement of analysis classes

○ The solution domain, where you can find utility classes,

reusable components, GUI frameworks, etc

3

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

Design classes can be refined from analysis
classes

4

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

In the analysis classes we only had a class name,
some high-level attributes and operations

5

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

In the design classes we have a complete set of
attributes fully specified with name, type, visibility (and
optionally a default value)

6

Note:
The - before the attribute
name symbolises the
private visibility modifier

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

In the design classes we have a complete set of
operations fully specified with name, parameter list,
return type, and visibility modifier

7

Note:
The + before the operation
name symbolises the
public visibility modifier

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

Well-formed design classes are passed to
developers, or used directly for code generation

● A class should be assessed from the perspective of its
users

● To be well-formed, the class should
○ be complete and sufficient
○ be primitive
○ have a high cohesion of its features
○ have a low coupling with other classes

8

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

Completeness and sufficiency

● The public operations of a class define a contract
between the class and clients of the class

● A complete and sufficient class gives the class users
of the class exactly what they expect - no more, no
less
○ Completeness - a class should satisfy all

reasonable client expectations
○ Sufficiency - a class should be as simple and

focused as possible

9

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

Primitiveness

● A class should not offer multiple ways of doing the same
thing
○ This is confusing to clients

○ This can lead to future maintenance and consistency
problems

● Services should be:
○ Simple

○ Atomic

○ Unique

● Aim for the simplest and smallest set of operations

● Add to this set only if you have a proven case for doing so

10

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

High cohesion

● Each class should capture a single, well-defined abstraction,

using the minimal set of features

● All features (operations and attributes) are designed to

implement a small, focused set of operations

● Cohesive classes tend to be
○ Easy to understand
○ Easy to reuse
○ Easy to maintain

11

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

Low coupling

● A class should be associated to a minimal number of
other classes to allow it to fulfill its responsibilities

● Many associations come directly from the analysis mode
● Other associations are introduced by implementation

constraints, or by the wish to reuse code - the latter need
to be examined carefully

● Some coupling is desirable
○ High coupling within a subsystem indicates that the

subsystem is cohesive
○ High coupling between subsystems indicates that the

system is likely hard to maintain and evolve

12

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

Inheritance

● During analysis, you should only use inheritance
where there is a clear and unambiguous “is-a”
relationship between analysis classes

● During design, you may also consider using
inheritance in a tactical way, to reuse code
○ Inheritance is used here to facilitate the

implementation of the child class - use this with
discretion

13

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Refining analysis relationships

14

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Analysis associations must be refined to design relationships
that are implementable in the target OO language

● Many relationships between analysis classes are not
directly implementable as-is
○ Bi-directional associations are not directly supported
○ Association classes are not directly supported
○ Many-to-many associations are not directly

supported

15

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Refinements

● Associations to aggregation, or composition
relationships, where appropriate

● Implementing one-to-many associations
● Implementing many-to-one associations
● Implementing many-to-many associations
● Implementing bidirectional associations
● Implementing association classes

16

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Desirable features of design associations

● Mandatory features for design associations
○ navigability
○ multiplicity on both ends

● Recommended features for design associations
○ association name, or
○ role name at least on the target end

17

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Aggregation and composition

18

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 5 – Use Cases

Aggregation and composition

Aggregation
A loose type of relationship

between objects (e.g. a

computer and its peripherals)

19

Composition
A very strong type of

relationship between objects

(e.g. a tree and its leaves)

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Aggregation

20

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Aggregation is a whole-part relationship

● A type of whole part relationship where
○ The aggregate is made of many parts

○ The aggregate uses services of its parts

○ The aggregate plays the role of the whole

○ If you only have navigability from the whole to the part, the

part is not even be aware that it is part of the whole

21

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Aggregation example semantics

● A computer may be attached to 0 or more printers

● At any one point in time, a printer is connected to at most

one computer

● Over time, many computers may use a given printer

● The printer may exist even if there are no attached

computers

● The printer is, really, independent from the computer

22

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Aggregation semantics summary

● The aggregate can sometimes exist independently
from the parts, sometimes not

● The parts can always exist independently of the
aggregate

● The aggregate is, in some sense, incomplete if some
of the parts are missing

● It is possible to have shared ownership of the parts by
several aggregates

23

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Aggregation is transitive

24

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Aggregation is asymmetric - no object can be
part of itself

25

This model assumes that although
products can be composed of other
products, these are all different products
and the asymmetry constraint is
preserved.

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Association is symmetric - an object can be
associated to itself

26

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Composition

27

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Composition is a stronger form of aggregation

● Like aggregation, it is a whole-part relationship, transitive and

asymmetric

● Unlike aggregation, in composition the parts have no
independent life outside of the whole

● In composition, each part belongs to at most one and only one
whole

● If you destroy the whole object, you also destroy all its parts

28

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Composition semantics

● The parts can only belong to one composite at a time - there is

no possibility of shared ownership of a part

● The composite has sole responsibility for the disposition of all

its parts - this means responsibility for their creation and

destruction

● The composite may release parts, provided responsibility for

them is assumed by another object

● If the composite is destroyed, it must either destroy all its parts

or give responsibility for them over to some other object

29

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 5 – Use Cases

Aggregation vs composition

Aggregation
You may form reflexive

aggregation hierarchies and

networks - an object can be part
of more than one aggregate

30

Composition
You may only have reflexive

composition hierarchies - an
object can only be part of one
composite at any point in time

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Composition and attributes: choose the most adequate for
increased clarity, usefulness and readability of the model

● A part in a composite is equivalent to an attribute
○ An attribute can be seen as a composition relationship between

the composite class and the class of the attribute

● However, we do use both ways of expressing the same thing,

often in the same diagrams. Why?
○ Attributes may be of primitive data types. You could stereotype

them as <<primitive>>, but this would just clutter the model, so
primitive type attributes are always modelled as attributes

○ There are several utility classes, like Time, Date, or String, that are
used very often. Again, although you could model these as well,
this would clutter the diagram, so these too, are modelled as
attributes

31

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Refining analysis relationships

32

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Analysis associations should be refined into
aggregation, or composition, when possible

● Redefine associations into aggregation or composition, where

possible
○ The exception is when there would be a cycle in the aggregation graph

● Add multiplicities and role names to the association, if they are

absent

● Decide which side of the association is the whole, and which is the

part

● Look at the multiplicity of the whole side
○ If it is 0..1, or exactly 1, you may be able to use composition
○ Otherwise, use aggregation

● Add navigability from the whole to the part
○ Design associations must be unidirectional

33

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

One-to-one associations often lead to
composition, or even an attribute

34

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Many-to-one associations lead to aggregation, provided
there are no cycles in the aggregation graph

35

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

One-to-many associations

● There is a collection of objects on the part side of the
relationship
○ To implement it, you either use native collection

support
■ An array
■ A collection class

36

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Collections

● A class whose instances specialize in managing collections of objects
● Collection classes typically support

○ adding objects to the collection

○ removing objects from the collection

○ retrieving a reference to an object within the collection

○ traversing the collection, by visiting its objects one by one - an iterator

37

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Strategies when modelling with collections

1. Model the collection explicitly
2. Use a tagged value
3. Specify the desired semantics rather than an

implementation class
4. Leave it to the programmers

38

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

1. Model the collection explicitly

● Advantage - it is explicit

● Disadvantage - adds a lot of clutter to the model
○ Choice of collection class is usually a tactical programming decision -

leave it to the programmer to decide
○ If, for some reason, the choice of collection class is strategic design

rather than a tactical decision, then specify it

39

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

2. Use a tagged value

● Specify how each one-to-many association should be implemented

● Add a tagged value to the association specifying the code generation
properties for each one-to-many association

40

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

3. Specify the desired semantics rather
than an implementation class

● You can specify the semantics of the collection using a property

tag, leaving the implementation details to the programmer

○ Advantages: concise, giving precise enough information to

the programmer

○ Disadvantage: not enough for automatic code generation

41

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Properties can be combined

42

Basic Property Semantics

{ordered} Elements in the collection are maintained in a strict order

{unordered} There is no ordering of the elements in the collection

{unique} Elements in the collection are unique - no repeated objects

{nonunique} Duplicate elements allowed in the collection

Combined Property OCL collection (other languages have something similar)

{unordered, nonunique} Bag

{unordered, unique} Set

{ordered, unique} OrderedSet

{ordered, nonunique} Sequence

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

What if you want a Map?

● Maps are optimized to quickly return a value,

given a key

● UML does not have a standard way of

representing maps

● You can still represent a map with a tagged

value, but it is a good idea to add a note to

your diagram explaining it, as it is not standard

○ {map, keyname} (this is implementation

agnostic)

○ {HashMap} (this uses a Java HashMap)

○ {SortedMap} (this uses a Java SortedMap)

○ ...

43

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

4. Don’t bother refining one-to-many collection
classes - leave it to the programmers

Hey! hey!
Don’t bother,

undefined, undefined, undefined, undefined...

44

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Reified relationships

45

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Reification means to make concrete, or real

46

● You need to reify the following analysis relationships, as they

are not supported by common OO languages

○ many-to-many associations

○ bidirectional associations

○ association classes

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Many-to-many associations

● Supported by some object databases
● Not supported directly in most OO languages

○ They need to be reified into normal classes, aggregations, compositions, and

dependencies

● In analysis you could be vague about ownership and navigation details
● In design, you need to be precise
● In this particular example, we opted by a resource-centric design

47

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Bidirectional associations

● Not supported directly in most OO languages
○ We need to reify the bidirectional analysis association into two unidirectional

associations, or dependencies

○ Remember to keep the asymmetry relationship - an object may not be part of

itself, in aggregation or composition

48

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Association classes are an analysis artifact -
they are not supported by OO languages

49

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

You decide which side of the association plays
the role of the whole, and which plays the part

50

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

The association class is turned into a class that serves
as a “middle man” between the associated classes

51

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Use a combination of composition and aggregation (or even
dependency, to capture the association class semantics

52

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

You can keep the semantics of a unique pair by
adding a note with the appropriate constraint

53

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

Aggregation vs inheritance

54

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

Inheritance is the strongest form of coupling
between classes - it is an inflexible relationship

● Inheritance is the strongest form of coupling between classes

● Encapsulation is weak within the class hierarchy

○ Changes in a base class impact strongly on its children

● Inheritance is inflexible

○ Inheritance relationships are fixed at compile time

○ In contrast, aggregations and compositions can evolve at

runtime

55

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

What is wrong with this diagram?

56

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

What if you want to promote John to become a
manager? You can’t change its class at runtime!

57

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

You can create a new Manager for representing John, copy all the
relevant data from John the Programmer to John the Manager,
and add John the Manager to any relevant collection

58

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

Finally, delete John, the programmer

59

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

This process was cumbersome, because we
used the wrong abstraction

60

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

Is an employee just his job, or is it rather that an
employee has a job?

● This is a common modelling
mistake. Subclasses should
always represent a special kind
of rather than a role played by.

● A job is a role played by an
employee and does not really
indicate the kind of employee.

● That said, maybe there are
several kinds of jobs in a
company and these would be
better candidates for an
inheritance hierarchy.

61

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

Using aggregation, you can get the correct
semantics and make your model more flexible!

62

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

Now, you can promote John to Manager with a
simple assignment

63

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

Multiple inheritance

64

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

With multiple inheritance, a class may inherit
features from several super classes

65

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

Multiple inheritance allows a class to have
more than one parent

● This is not supported by all programming languages
(e.g. Java and C# do not support it)

● All parent classes must be semantically disjoint (i.e.
orthogonal), to avoid unforeseen interactions among
them

● The “is kind of” and substitutability principles must
apply between a subclass and all its superclasses

● The superclasses should have no parent in common,
to avoid a well-known anti-pattern - the multiple
inheritance diamond

66

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

67

Diamonds are not a girl’s best friend.
Not if she really is a class model...

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

Which implementation of equals() should
Button use?

● Languages supporting

multiple inheritance, such as

C++, have language-specific

solutions to mitigate this

problem

● Other languages, such as Java,

or C#, do not support multiple

inheritance, to prevent this

kind of problem

68

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

How to properly use multiple inheritance?
With a Mixin!

● Mixin classes are designed to be “mixed in” using multiple

inheritance

● Mixins provide a safe and powerful idiom

● In this example, Dialer is a mixin. All it does is to dial a phone

number. Not too useful on its own, but it provides a widely used

service in a cohesive package, being therefore a good candidate

for reuse.

69

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

Inheritance vs interface realization

70

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

Inheritance vs interface realization

● With inheritance, the inheriting class gets
○ interface - the public operations of the base classes
○ implementation - the attributes, relationships, protected and private

operations of the base classes

● With interface realization, the implementing class gets
○ interface - a set of public operations, attributes and relationships with no

implementation

● Both inheritance and interface realization define a contract that
subclasses and implementing classes must implement

● Interface realization is useful when you want to define a contract but
are not concerned about the implementation - this is more flexible and
robust than inheritance

71

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

Templates

72

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

We can use templates to parameterize a class

● Instead of defining the actual types of attributes, operation

return values and operation parameters, we can define those as

placeholders, or parameters

● These placeholders are then replaced by actual types to create

new classes

73

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

In this example, BoundedArray is <<bind>> to specific
instantiated classes: IntArray and StringArray

74

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

Same example, BoundedArray is <<bind>> to specific
instantiated class: in this case, a String

75

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

Nested classes

76

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

A nested class is a class inside a class.

● The nested class is only accessible by its outer class, or by objects

contained by the outer class

● These classes are, in general, only used in design time

● In programming languages, such as Java, nested classes are often

used for event handling

77

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

Did you really understand Design
Class Diagrams? Test yourself at:
http://elearning.uml.ac.at/

78

MDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 8 – Design Class Diagrams

Bibliography

Jim Arlow and Ila Neustadt, “UML 2 and the Unified Process”,
Second Edition, Addison-Wesley 2006

• Chapter 17

79

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Structured classifiers

80

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

We can explore the relationship of a composite
classifier with its internal parts

● This may help to
○ Design a class

○ Design a use case

○ Design a subsystem

● Supports focusing on the internal works of the
corresponding classifier

81

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

A structured classifier is a classifier that has an
internal structure

● The structure is modelled as parts that are joined by
connectors

● The interaction of a structured classifier is modelled
by its interfaces and ports

82

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

A part is the role that one or more instances of a classifier
may play in the context of the structured classifier

A part contains:

● Role name
○ Descriptive name for the role that instances play in the context

of a structured classifier

● Type
○ Only instances of this type (or a subtype of this type) can play

the role

● Multiplicity
○ The number of instances that can play a particular role at any

given moment

83

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Connectors represent relationships between
parts

● A connector indicates that parts can communicate with each

other

● There is a relationship between the instances playing those

parts over which communication can occur

● Relationships may map to associations between the classes, or

even some ad hoc relationship for temporary collaboration to

perform some task

● Connectors and parts only exist within the context of a

particular classifier

84

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Structured classifier syntax

85

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Structured classifier syntax

● The parts collaborate in the context of

the structured classifier

● The parts represent roles that instances

of a classifier can play in the context of

the structured classifier
○ The parts do not represent classes

● The connector is a relationship between

two parts indicating that the instances

playing roles specified by the parts can

communicate in some way

● Focus on internal implementation and

external interface

86

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Structured class example - a library
management system

87

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

There are two types of borrowers: students and
staff

88

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Students can borrow up to 4 books

89

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Staff can borrow up to 8 books

90

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Only one librarian can be logged onto the
system at any particular time

91

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Now, let us zoom into the LibraryManager and
have a look at its implementation

92

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

From the perspective of the LibraryManager, there
are two types of borrowers: students and staff

93

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Students can borrow up to 4 books at a time (studentLoan).
Staff can borrow up to 8 books at a time (staffLoan).

94

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

There are several librarians, but only one can be logged on at
any given time

95

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Some association roles may map to part roles

● The roles played by instances in LibraryManager can differ from

the roles classes play in their associations with LibraryManager,

due to refinement

96

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Borrower class has the role borrowers

● This is refined into a more specific role played by the Borrower

subclass StudentBorrower, for students

97

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

Borrower class has the role borrowers

● This is refined into a more specific role played by the Borrower

subclass StaffBorrower, for staff

98

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 – Refining Design Relationships

LibraryManager can also be represented in its
own composite structure diagram

99

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 - Refining Analysis Relationships

Did you really understand Design
Class Diagrams? Test yourself at:
http://elearning.uml.ac.at/

100

MDS 2018/19 © Departamento de Informática, FCT/UNL 9 - Refining Analysis RelationshipsMDS 2018/19 © Departamento de Informática, FCT/UNL 9 - Refining Analysis Relationships

Bibliography

Jim Arlow and Ila Neustadt, “UML 2 and the Unified Process”,
Second Edition, Addison-Wesley 2006

• Chapter 18

101

