Teoria da Computação

Mini-Teste 2 ${\rm A}$

MIEI 2015/2016 FCT UNL

1. Consider the alphabet $BIT \stackrel{\text{def}}{=} \{0, 1\}$. Specify a Deterministic Finite Automaton (DFA) over the alphabet BIT that checks if a word over BIT has a 0 after every 1.

(a) x	$S \stackrel{\text{def}}{=} \{1\}, \ q \stackrel{\text{def}}{=} 1, \ F \stackrel{\text{def}}{=} \{1\}$
	$\begin{array}{c c c} \delta & 0 & 1 \\ \hline 1 & 1 & 2 \\ \hline 2 & 1 & - \\ \end{array}$
(b) x	$S \stackrel{\text{def}}{=} \{1, 2\}, \ q \stackrel{\text{def}}{=} 1, \ F \stackrel{\text{def}}{=} 1$
	$\begin{array}{c cccc} \delta & 0 & 1 \\ \hline 1 & 1 & 2 \\ \hline 2 & 1 & - \\ \end{array}$
(c) x	$S \stackrel{\text{def}}{=} \{1, 2\}, \ q \stackrel{\text{def}}{=} 1, \ F \stackrel{\text{def}}{=} \{1\}$
	$\begin{array}{c c c} \delta & 0 & 1 \\ \hline 1 & 1 & 2 \\ \hline 2 & 1 & 1 \\ \end{array}$
(d)	$S \stackrel{\text{def}}{=} \{1, 2\}, \ q \stackrel{\text{def}}{=} 1, \ F \stackrel{\text{def}}{=} \{1\}$
	$\begin{array}{c c c} \delta & 0 & 1 \\ \hline 1 & 1 & 2 \\ \hline 2 & 1 & - \\ \end{array}$
(e) x	$S \stackrel{\text{def}}{=} \{1, 2\}, \ q \stackrel{\text{def}}{=} 1, \ F \stackrel{\text{def}}{=} \{2\}$
	$\begin{array}{c c c} \delta & 0 & 1 \\ \hline 1 & 1 & 2 \\ \hline 2 & 1 & - \\ \end{array}$

2. The previous automaton accepts the word 010 because:

- (a) $\hat{\delta}(2,010) = 1 \in F \ge 0$ (b) $\hat{\delta}(1,010) = 1 \in F$ (c) $\hat{\delta}(2,010) = 2 \notin F \ge 0$
- (d) $\hat{\delta}(1,010) = 1 \notin F$ x
- (e) $\delta(1,010)=1\in F$ x

- 3. The previous automaton does not accept the word 01 because:
 - (a) $\hat{\delta}(2,01) = \bot x$
 - (b) $\hat{\delta}(2,01) = 2 \notin F \mathbf{x}$
 - (c) $\delta(1,01) = \perp \mathbf{x}$
 - (d) $\hat{\delta}(1,01) = \bot \mathbf{x}$
 - (e) $\hat{\delta}(1,01) = 2 \notin F$
- 4. If an automaton has an empty alphabet and the initial state is not final, its language is:
 - (a) empty, as it is able of accepting all possible words. x
 - (b) empty, as it is not able of accepting any word.
 - (c) the set of all possible words, as it is not able of accepting any word. x
 - (d) the set of all possible words, as it is able of accepting all possible words. x
 - (e) the set of all possible words, as it has no transitions. x
- 5. Define a regular expression whose language is the set of words over $\{a, b\}$ that after a b have an even number of as or have only an odd number of as.
 - (a) $a^*(b(aa)^*) + a(aa^*) \ge a^*(b(aa)^*) + a^*(aa^*) \ge a^*(b(aa)^*) = a^*(b(aa)^*) = a^*(b(aa)^*) \ge a^*(b(aa)^*) = a^*(b(aa)^*$
 - (b) $a^*(b(aa)^*)^* + a(aa^*) \ge a^*(b(aa)^*)^* + a^*(b(aa)^*) \ge a^*(b(aa)^*)^* + a^*(b(aa)^*)^* + a^*(b(aa)^*) \ge a^*(b(aa)^*)^* + a^*(b(aa)^*)^* + a^*(b(aa)^*)^* + a^*(b(aa)^*) \ge a^*(b(aa)^*)^* + a^*(b(aa)^*) \ge a^*(b(aa)^*)^* + a^*(b(aa)^*) \ge a^*(b(aa)^*)^* + a^*(b(aa)^*) \ge a^*(b(aa)^*) = a^*(b(aa)^*)^* + a^*(b(aa)^*) \ge a^*(b(aa)^*) = a$
 - (c) $a^*(b(aa)^*)^* + a(aa)^*$
 - (d) $a^*(b(aa)^*) + a(aa)^* \ge$
 - (e) $a^*(b(aa))^* + a(aa)^* x$
- 6. Define the language of the regular expression $(aba)^* + (b)^*$, considering that, for instance, $w^3 = w w w$.
 - (a) $\{(aba)^n \mid n \in \mathbb{N}\} \cup \{b\}^* \mathbf{x}$
 - (b) $\{(aba)^n \mid n \in \mathbb{N}\} \cdot \{b\}^* \mathbf{x}$
 - (c) $\{(aba)^n \mid n \in \mathbb{N}_0\} \cup \{b\}^*$
 - (d) $\{(aba)^n \mid n \in \mathbb{N}_0\} \cap \{b\}^* \mathbf{x}$
 - (e) $\{(aba)^n \mid n \in \mathbb{N}_0\} \cdot \{b\}^* \mathbf{x}$
- 7. Select the correct justification.
 - (a) $ca \in \mathcal{L}(c^+a^*b^*)$, since $ca = ca\epsilon, \epsilon \in \mathcal{L}(b^*)$, $a \in \mathcal{L}(a^*)$, and $c \in \mathcal{L}(c^+)$.
 - (b) $ca \in \mathcal{L}(c^+a^*b^*)$, since $ca = \epsilon ca$, $\epsilon \in \mathcal{L}(b^*)$, $a \in \mathcal{L}(a^*)$, and $c \in \mathcal{L}(c^+)$. x
 - (c) $ca \in \mathcal{L}(c^+a^*b^*)$, since $aab = \epsilon ca$, $\epsilon \in \mathcal{L}(c^+)$, $a \in \mathcal{L}(a^*)$, and $b \in \mathcal{L}(b^*)$. x
 - (d) $ca \in \mathcal{L}(c^+a^*b^*)$, since $ca = ca\epsilon$, $c \in \mathcal{L}(c^*)$, $a \in \mathcal{L}(a^+)$, and $\epsilon \in \mathcal{L}(b^*)$. x
 - (e) $ca \in \mathcal{L}(c^+a^*b^*)$, since $ca = \epsilon ca$, $\epsilon \in \mathcal{L}(c^+)$, $a \in \mathcal{L}(a)$, and $b \in \mathcal{L}(b)$. x
- 8. Select the correct justification.
 - (a) $ac \notin \mathcal{L}(a^*bc^*)$, since b must appear in a word of the language.
 - (b) $ac \notin \mathcal{L}(a^*bc^*)$, since c is not in the alphabet of the language. x
 - (c) $ac \notin \mathcal{L}(a^*bc^*)$, since c is in the alphabet of the language. x
 - (d) $ac \notin \mathcal{L}(a^*bc^*)$, since a and c should not appear in a word of the language. x
 - (e) $ac \in \mathcal{L}(a^*bc^*)$, since b may appear in a word of the language. x