Teoria da Computação MIEI 2018/2019 - FCT UNL

Aula Prática 1

Inductive sets

Provide an inductive definition for the following sets:

- 1. PowersOfTwo $\stackrel{\text{def}}{=} \{n \in NAT \mid n = 2^p \land p \in NAT\}.$
- 2. $exp2 \in NAT \rightarrow NAT$ such that $exp2(n) = 2^n$. Give a justification, using derivation trees, that $4 \mapsto 16 \in exp2$ (or equivalently, that exp2(4) = 16).
- 3. OddSequences $\stackrel{\text{def}}{=} \{s \in SEQ \mid len(s)\% 2 = 1\}.$ Give a justification, using derivation trees, that $(1, 2, 3) \in OddSequences$.
- 4. *SortedSequences*, the set of increasing sequences of natural numbers. For example,

 $(2,5,6,6,7) \in SortedSequences$ $(1,2,1,3,4) \notin SortedSequences$

Give a justification, using derivation trees, that $(3, 5, 5, 8) \in SortedSequences$.

5. The relation

 $Reverse \subset SEQ \times SEQ$

such that $(s_1, s_2) \in Reverse$ if and only if s_2 is the reverse sequence of s_1 . For example,

 $((1,3,5),(5,3,1)) \in Reverse$

 $((1,3,5),(2,3)) \notin Reverse$

Give a justification, using derivation trees, that $((1,3,5),(5,3,1)) \in Reverse$.