
Teoria da Computação
(Theoretical Computer Science)

Licenciatura em Engenharia Informática
Lecture Notes 2011-2012

Luis Caires

version of May 8, 2014

1 Review of Set Theory, Modelling with Sets

The basic goal of this chapter is to help you learn how to:

• model data spaces and data structures using basic Set Theory

• specify properties of states of a computing system and of elements
within a data structures using Logic

1.1 Basic Set Theory

1. Sets, Everything is a Set and ZFC

Set theory was invented to provide a foundation to model ALL mathe-
matical concepts. In turn mathematical concepts can be used to model
most concepts of scientific and technological disciplines. Informatics
and computer science are not an exception. It turns out that set the-
ory and mathematical logic are particularly convenient tools to model
concepts in informatics and computer science.

Set theory and logic play for informatics the same basic role as mathe-
matical analysis (calculus) plays for disciplines such as physics or elec-
tronic engineering.

We will base our presentation on ZFC (Zermelo-Fraenkel-Cantor) Set
Theory, due to these three famous mathematicians. Set theory was
also developed by pioneers of computer science, for example, John Von
Neumann.

1



Set theory is based on the idea that ”Everything is a set”. Actually, this
means ”Everything can be modeled by a set”. ZFC models things such
as boolean values, natural numbers, relations, functions, databases, and
even algorithms, just based on the fundamental notion of set.

2. Emptyset

The empty set is the “simplest” set we may think of. It is the set
without elements. It is represented ∅.

3. Membership

The fundamental form of statement in set theory is

x ∈ y

which means “x is a member of y”, or “x belongs to y”.

4. Extensionality

The ”Extensionality Principle” of set theory means that sets are de-
termined uniquely by their elements. If two sets (finite or infinite)
have exactly the same elements, then they are actually the same set.
For example, we may think of two Java vectors with exactly the same
elements, without being the same vector. This is not the case with sets.

Practically, if we want to check if two sets A and B are actually the
same set, if is enough to check that every element of A also belongs to
B, and that every element of B also belongs to A.

A = B ⇔ ∀x.(x ∈ A⇔ x ∈ B)

Extensionality also implies that there is just one empty set.

5. Subset

A set x is a subset of a set y if all elements of x belong to y. Formally,
we have

A ⊆ B ⇔ ∀x.(x ∈ A⇒ x ∈ B)

Note that A ⊆ A for all sets A, and ∅ ⊆ A for all sets A. Sometimes
we use A ⊂ B to say that A is a strict subset of B. A strict subset of
a set B is a subset that is not the trivial subset B.

A ⊂ B ⇔ (A ⊆ B) ∧ A 6= B

2



6. Enumeration

We can define sets in various ways.

The simplest way is by exhaustively enumerating all the elements in
the set you want to specify

BOOL , {FALSE ,TRUE}
DWARFS , {“Sneezy”, “Sleepy”, “Dopey”, “Doc”, “Happy”,

“Bashful”, “Grumpy”}
LAMPSTATES , {ON ,OFF}

Obviously, this only works for specifying finite sets.

When we define a set by enumerating its elements, the order or pre-
sentation does not matter! So, the following enumerations define the
same set:

{1, 2, 3}
{2, 1, 3}
{3, 1, 2}

7. Sets, Sets of Sets, Sets of Sets of Sets, ...

An set can also be an element of another set, and so on. This is useful
to describe structured entities, with several components

STACK , {0, {2, {3}}}
BOOLS , {∅, {TRUE}, {FALSE},BOOL}

8. Comprehension

We may define a new set using a logical property to select the elements
we want to collect. For example

The set of even natural numbers:

EVEN , {n ∈ NAT | n%2 = 0}

The set of non empty sets:

NOTEMPTY , {s | s 6= ∅}

The general form of the “naive” comprehension principle allows us to
define a new set given any property P expressed in the logic of set
theory.

{x | P (x)}

3



The logic of set theory is essentially first-order logic enriched with sev-
eral constants and operators that talk about sets, for example, the
empty set, the membership relation, equality, etc, etc.

9. Russell’s Paradox

In 1901 Bertrand Russell discovered an inconsistency of Cantor-Frege
set theory, by considering the set

R , {x | x 6∈ x}

Intuitively (so to speak), R is the set of all sets that are not members
of themselves. Being not a member of itself is a property that make
sense, in principle. We can think of many sets that enjoy this property,
for example, the empty set is not a member of itself. The set of boolean
values is not itself a boolean value.

Since there are so many examples of sets that are not members of
themselves, the set R as defined above, if it exists, must be not empty!
We may even naively think that R contains all the sets that exists,
since perhaps no set can be a member of itself.

But a paradox (or inconsistency) arises! Consider the meaning of the
proposition

R ∈ R

By definition of the “set” R, R ∈ R means that R 6∈ R.

Likewise, if we assume R 6∈ R, then it cannot be the case that R 6∈ R.
So R 6∈ R implies R ∈ R.

Even if surprised at first, we must conclude that, according to the
definition of R, we conclude that

R ∈ R if and only if R 6∈ R

which is obviously a false statement, regardless of what R might be!

Since we arrived to an obviously false statement only by following the
basic rules of logic and the definition of R, Russell concluded, rightly,
that the problem was that an expression like {x | x 6∈ x} is a dangerous
one, or meaningless, and as such cannot be used to define a set.

A meaningless expression such as “{x | x 6∈ x}” cannot be accepted by
the language of set theory, as much as certain programs with typing
errors cannot be accepted by the definition of a given programming
language, and dubbed meaningless from the language perspective.

4



10. Separation

To avoid confusions like Russell’s paradox, we will always use Compre-
hension in a refined form, using the Separation principle of ZFC.

The general idea of the separation principle is that we may define a
new set given any property P expressed in the logic of set theory, to
select elements from some already well defined set S.

{x ∈ S | P (x)}

So, according to this principle, we have the right to write

{n ∈ NAT | n%2 = 0}

a well defined set, but not an expression such as {s | s 6= ∅}.
Be careful to always use the separation principle when defining sets by
comprehension in this course!

11. Union

Besides Enumeration and Separation, we may define sets using the
Union operation

A ∪B
Intuitively A∪B denotes the set that contains exactly the elements in
A and B.

∀x.x ∈ A ∪B ⇔ x ∈ A ∨ x ∈ B
Given a set of sets S we also define the union

⋃
S to mean the union

of all sets which are elements of S. More precisely, we have

∀x.(x ∈
⋃

S)⇔ ∃y.(y ∈ S ∧ x ∈ y)

12. Intersection / Disjointness

We may define sets using the Intersection operation

A ∩B

Intuitively A ∩ B denotes the set that contains exactly the elements
that belong both to A and to B.

∀x.(x ∈ A ∩B)⇔ (x ∈ A) ∧ (x ∈ B)

We may also see that

A ∩B = {x ∈ A | x ∈ B}

5



Given a set of sets S we also define the intersection
⋂
S to mean the

intersection of all sets which are elements of S. More precisely, we have

∀x.(x ∈
⋂

S)⇔ ∀y.(y ∈ S ⇒ x ∈ y)

Two sets A and B are said to be disjoint, in symbols A#B, if they do
not contain any common member. We have

A#B ⇔ (A ∩B) = ∅

We say that a collection S of sets is pairwise disjoint if all pairs of sets
in the collection are disjoint. More precisely

#S ⇔ ∀x.∀y.(x ∈ S ∧ y ∈ S ∧ x 6= y ⇒ x#y)

13. Relative Complement

Given a sets A and B, the relative complement A \ B denotes the set
of all elements of A that do not belong to B. Formally

A \B = {x ∈ A | x 6∈ B}

The “absolute complement” of a set A, written A is not definable in
ZFC, due to the Russell paradox.

14. Pairs

For structuring information we need some kind of construction to ag-
gregate data. The simplest one is the pair. We may form e.g., a pair
consisting of a team and the size of the team.

daltons , ({“jack”, “joe”, “averell”, “william”}, 4)

This corresponds to the well known notion of ordered pair. In set
theory, everything is a set, and in fact an ordered pair such as the one
above may be encoded in a set, using the scheme

(x, y) , {x, {x, y}}

This encoding of pairs is a variant of one Kuratowski proposed in 1921.

In practice, we will simply use the standard notation (x, y) to represent
ordered pairs.

6



15. Products

The product of to sets A and B, written A×B is the set of all ordered
pairs whose first element belongs to A and the second element belongs
to B.

We have

∀x.(x ∈ A×B)⇔ ∃a.∃b.(a ∈ A ∧ b ∈ B ∧ x = (a, b))

This operation is also called the “cartesian” product. The name ”carte-
sian” derives from the name of René Descartes, the mathematician-
philosopher that invented the related concept of cartesian plane, where
one conceive points with two coordinates (x, y) (even if it is best known
by his famous punchline “I think therefore I am” :-).

16. Fixed Sequences and n-tuples.

We may represent tuples of more than 2 elements by iterating the
product. For example STRING × NAT × STRING denotes the set of
all triples (a, b, c) where a ∈ STRING , b ∈ NAT and c ∈ STRING .

This idea of forming sets of tuples of any fixed arbitrary length works
by considering the operation A×B to be right associative, so A×B×C
is actually an abbreviation of A× (B × C).

In the same way a triple such as (a, b, c) is actually an abbreviation of
a pair (a, (b, c)).

So we can say, for example, that the first component of (a, b, c) is a and
the second component of (a, b, c) is (b, c).

Note however that a sequence such as ((a, b), c) is different from the
sequence (a, b, c). The first is a sequence of two elements, namely the
pair (a, b) and c, while the second sequence contains three elements, a,
b and c.

This reasoning applies to sequences of elements of arbitrary finite length.

17. Relations

A (binary) relation between elements of a set A and elements of a set B
is modeled as a subset of the product A×B. For example, the relation
SAMEPAR that holds between two natural numbers if and only if they
have the same parity (odd or even) is defined as follows

SAMEPAR , {(x, y) ∈ NAT × NAT | x%2 = y%2}

7



For example, (2, 8) ∈ SAMEPAR and (9, 1) ∈ SAMEPAR but (191, 256) 6∈
SAMEPAR.

When R is supposed to denote a relation, we write aR b for (a, b) ∈ R,
to make it more readable. For example, we may write 2 SAMEPAR 8.

Here some other examples of binary relations:

x FATHER OF y

n ANCESTOR OF y

n LINKED TO y

We can also define relations between more than 2 elements. For that,
we just iterate the constructions above, using products and n-tuples.
For example, a phone list may be seen as a relation

PHONELIST ⊂ FIRSTNAME × LASTNAME × PHONENUM

where we may set FIRSTNAME , STRING , LASTNAME , STRING
and PHONENUM , NAT . For example, we may consider

(“Luis”, “Caires”, 218402825) ∈ PHONELIST

Relations are an extremely important concept in informatics and com-
puter science. For example, it is pervasive in databases theory and
practice, which are based in the so called relational data model, in-
vented by Edgar Codd in 1970. Codd won the 1981 ACM Turing
Award for this key contribution to Informatics. The relational model
is the basis of most modern database systems, which use the query
language SQL. You will learn more about this in the Databases course.

18. PowerSet

We often need to define the set of all subsets of a given set. For example,
we may want to consider a specific phonelist, as defined above. To what
set does such phonelist belong? Well, a single phonelist is a set of triples
(each one representing a record) where each triple belongs to the set

FIRSTNAME × LASTNAME × PHONENUM

The set of all sets of records of these kind is denoted by the powerset

℘(FIRSTNAME × LASTNAME × PHONENUM )

In general, for any sets A and S we have that

A ∈ ℘(S)⇔ A ⊆ S

8



19. Functions

A function is modeled in set theory just as a special kind of relation,
a relation between arguments and the corresponding results. Since a
function cannot give two different results for the same argument, we
impose the following condition for a binary relation R to be considered
a function

function(R) , ∀(x, y) ∈ R, ∀(x′, y′) ∈ R . (x = x′)⇒ (y = y′)

This means that if F is a function such that (“luis”, a) ∈ F and
(“luis”, b) ∈ F then a = b, for example a = b = 45. There cannot
be two different pairs with the same first component!

We may think of F as the AGE function that assigns to a person its
(unique) age.

Since the result b of a function relation F is unique for any given argu-
ment, we denote such result by F (a) where a is the first element of the
pair (a, b) ∈ F . In the example above, we have, say F (“luis”) = 45.

So, note that, in the end, a function in set theory is nothing but a set
of ordered pairs!

To highlight the use of ordered pairs in the context of functions, we
also use the following alternative notation for ordered pairs

x 7→ y , (x, y)

The notation x 7→ y reads “x is mapped to y” (“x é aplicado em y”).

Given a function as a set (of ordered pairs) we also call such set (of
ordered pairs) the extension of the function.

For example, the extension of the NOT function on booleans may be
represented by:

NOT , {TRUE 7→ FALSE ,FALSE 7→ TRUE}

Then, we have NOT (TRUE ) = FALSE , and (FALSE ,TRUE ) ∈ NOT .

The set of all subsets of A×B which are functions is denoted by

A→ B

In other words,

A→ B , {R ∈ ℘(A×B) | function(R)}

9



We may then write, as usual

NOT ∈ BOOL→ BOOL

F ∈ A→ B means that F is a function that sends elements of A into
elements of B.

The set A (in A→ B) is called the domain of the function F , and B
the codomain of the function F .

There are several ways of defining functions in set theory. An conve-
nient way we will often use is to follow the pattern

F , {x 7→ y ∈ D × C | P (x, y)}

where P (x, y) is a logical condition between the argument x and the
result y, D is the domain and C is the codomain. For example,

DOUBLE , {x 7→ y ∈ NAT ×NAT | y = 2× x}

Then DOUBLE (2) = 4, etc...

20. Identity Function

For any set A there is the identity function on A, that maps each e ∈ A
into itself. The identity on A is noted IdA. We have

IdA = {a 7→ b ∈ A× A | a = b}

so that IdA(a) = a for all a ∈ A.

21. Projections

Projections are useful functions that may be used to select elements
from pairs and n-tuples.

Given any product A×B we define the functions

π1 , {((a, b) 7→ a) ∈ (A×B)× A | (a, b) ∈ A×B}

π2 , {((a, b) 7→ b) ∈ (A×B)×B | (a, b) ∈ A×B}
You may check that for the functions π1 and π2 just defined we have

π1 ∈ (A×B)→ A

π2 ∈ (A×B)→ B

For example, π1((“luis”, 45)) = “luis”, and π2((“luis”, 45)) = 45.

Projections generalize to n-tuples, for example, we may define the pro-
jections π3, π4, etc, which operate on triples, 4-tuples, etc.

10



1.2 Solved modeling problems

1. Model the following system with a structure.

A lamp with two states ON and OFF.

(a) Model the set of states of a lamp with a set SLAMP .

(b) Define a function in SLAMP → SLAMP that models the “turn
on” operation.

(c) Define a function in SLAMP → SLAMP that models the “turn
off” operation.

(d) Define a function in SLAMP → BOOL that returns the current
state of the lamp.

Solution The set of states:

SLAMP = {0, 1}

The function of (b)

turn on , {0 7→ 1, 1 7→ 1}

The function of (c)

turn off , {0 7→ 0, 1 7→ 0}

The function of (d)

status , {0 7→ FALSE , 1 7→ TRUE}

The structure modeling the system:

LAMP , (SLAMP , turn on, turn off , status)

2. Model the following system with a structure.

A counter keeps the count of cars inside a tunnel by keeping track if
cars entering the tunnel and cars exiting the tunnel.

(a) Model the set of states of a counter with a set SCOUNTER.

(b) Define a function in SCOUNTER → SCOUNTER that models
the “car enter” operation.

(c) Define a partial function in SCOUNTER → SCOUNTER that
models the “car exit” operation.

11



(d) Define a function in SCOUNTER → NAT that yields the number
of cars currently inside the tunnel.

Solution The set of states:

SCOUNTER , NAT

The function of (b)

car enter , {n 7→ m ∈ NAT × NAT | m = n+ 1}

The function of (c)

car exit , {n 7→ m ∈ NAT × NAT | n = m+ 1}

The function of (d)
cars inside , idNAT

The structure modeling the system:

COUNTER , (SCOUNTER, car enter , car exit , cars inside)

3. Model the following data with sets

(a) The set of all bank accounts, where each bank account includes
the owner name, the account number, and the balance.

(b) Define a function JOIN that given a set of bank accounts B with-
out repeated account numbers, and two account numbers in B,
yields a set of bank accounts identical to the given one, except
that the two given accounts are merged in a new account, under
the number of (and owner of) smallest account number.

(c) To what set belongs the function JOIN ?

Solution We may first define the sets, just for convenience,

NAME , STRING

ACCNUM , NAT

AMOUNT , NAT

(a) The set of all bank accounts

ACC , NAME × ACCNUM × AMOUNT

An example of a bank account

(“luis”, 1024, 80000000000)

We have (“luis”, 1024, 80000000000) ∈ ACC

12



(b) Any set of bank accounts B is a subset of ACC , in other words, a
member of ℘(ACC ).

For any set B ∈ ℘(ACC ) and account numbers n1 and n2 in B, we define
the set

merge(B, n1, n2)

,
{c ∈ B | π2(c) 6= n1 ∧ π2(c) 6= n2}
∪
{(o, n, b) ∈ ACC |

n = min(n1, n2) ∧ ∃b1.∃b2.(o, n1, b1) ∈ B ∧ (o, n2, b2) ∈ B ∧ b = b1 + b2}

The first part of the union contains the accounts in B that are not the
accounts with numbers n1 or n2.

The second part of the union contains the “joined” account.
The function JOIN can then be defined

JOIN , {(S, n1, n2) 7→M |M = merge(S, n1, n2)}

(c) We have

JOIN ∈ (℘(ACC )× ACCNUM × ACCNUM )→ ℘(ACC )

1.3 Inductive Definitions

We have discussed several ways to define sets, for example, by enumeration,
by comprehension, and by applying set operations to previously defined sets.

Another fundamental way of defining sets, particularly useful in infor-
matics and computer science, is the so-called inductive definition.

Induction is an extremely powerful technique, and plays in set theory a
role similar to the one recursion plays in programming (this remark is only
for those of you that already know what is a recursive function or recursive
procedure in a programming language).

Using induction, we define sets using an incremental construction method,
by adding in stages to previously built stages, as if we were building skyscrap-
ers from their foundations.

Actually, the basic idea is quite simple.
First, we enumerate a (finite) set of basic elements that must belong to

the set we want to define. We can think of these basic elements as some kind
of “seeds”.

You may imagine the “seeds” as being the “basic” elements of the set.
This elements will be created in stage 0.

13



Figure 1: Building a set from the seeds, using rules to generate new elements.

Then, we add a new stage of elements to the set, these ”new” elements
must be calculated from the “seeds” according to some fixed rule. That will
be the second stage.

Then, we add a third stage of elements to the set, calculated from the
elements in level two, according to the same fixed rule.

And so on, and on ... indefinitely, to the infinite.
Obviously, we cannot in general implement the whole generation process

of the complete inductive set as an algorithm. But the mechanism of induc-
tion gives us for free the inductive set (which in general contains an infinite
number of elements) for granted automatically: we just have to say what are
the seeds, and what are the generation rules. Both the seeds and the rules
are finite in number, and we can easily write them down.

As a first, example, we consider an inductive definition of the set of
natural numbers (supposing that it was not yet defined). First the “seed”
(there is only one seed in this case, which is the simplest natural number,
namely 0). We thus define:

=⇒ 0 ∈ N

This “seed” rule asserts that 0 is in the set N , and defines the first layer of

14



N , which contains just 0. We then need a ”construction” rule, that allows
us to add new natural numbers to the set, based on elements already defined
in previous layers. The rule looks like:

x ∈ N =⇒ succ(x) ∈ N

We may read this construction rule as: If x is an element of the set N , then
succ(x) must also be an element of N . Here we have represented by succ(x)
the successor of x, e.g., succ(2) = 3.

The complete inductive definition of N is then as follows:

ZERO : =⇒ 0 ∈ N
SUCC : x ∈ N =⇒ succ(x) ∈ N

It contains two rules, one seed rule and one construction rule.
This inductive definition defines a set N , the set that contains all the

elements and only the elements that may be generated by the rules shown.
Note that we gave names to the rules in the inductive definition, the first

rule is called ZERO and the second rule is called SUCC . To name rules in
an inductive definitions, we may invent illustrative names, there is no fixed
recipe to give names to rules.

In general, an inductive definition may include any number of seed rules
and any number of construction rules, as we will see in forthcoming exam-
ples, although in the simple example we have only one seed rule and one
construction rule.

A fundamental property of any inductively defined set S is that ANY
element e ∈ S is always justified by a finite number of applications of con-
struction rules, always starting from one or more seed rules.

For example, we have 4 ∈ N .
What is the justification of the fact 4 ∈ N , according to the inductive

definition given above?
It is easy:

• We know that 0 ∈ N by the ZERO (seed) rule!

• We conclude 1 ∈ N by applying the SUCC (construction) rule to 0 ∈ N .

• We conclude 2 ∈ N by applying the SUCC (construction) rule to 3 ∈ N .

• We conclude 3 ∈ N by applying the SUCC (construction) rule to 2 ∈ N .

• We conclude 4 ∈ N by applying the SUCC (construction) rule to 3 ∈ N .

15



We will now go through a sequence of examples of inductive definitions
of sets.

Remember that in set theory, a data domain is a set, a function is a
set, a relation is a set, and we can also model properties as a set. We will
show below how the basic technique of inductive definitions can be used to
inductively define functions, relations, properties, data domains, and so on!

1. Example: Even numbers

Consider the set EVENN of even natural numbers. We have already
provided a definition of EVENN using comprehension. We now provide
an alternative inductive definition.

ZERO : =⇒ 0 ∈ EVENN
DUP : x ∈ EVENN =⇒ x+ 2 ∈ EVENN

2. Example: An inductively defined data type

Consider the set of all finite sequences of natural numbers SEQ. A
sequence may be represented in set theory by an n-tuple (see Section
1(16)).

Let us now define SEQ using an inductive definition (is is not really
possible to precisely define this set using either set enumeration or set
comprehension / separation).

EMPTY : =⇒ ∅ ∈ SEQ
ONEMORE : s ∈ SEQ ; x ∈ NAT =⇒ (x, s) ∈ SEQ

The (seed) rule EMPTY introduces the empty sequence (represented
here by the empty set) in the set SEQ .

The (construction) rule ONEMORE introduces a new sequence in the
set SEQ by adding an arbitrary natural number as the new first element
to an already introduced sequence.

Notice that the ONEMORE rule constructs a new element in the set
SEQ not only from some existing element s ∈ SEQ , but also from any
existing element n ∈ NAT .

For example, here is the justification that (3, 4, 2, 4) ∈ SEQ .

• We know that () ∈ SEQ by the EMPTY rule!

• We conclude (4, ∅) ∈ SEQ by applying the ONEMORE rule to
() ∈ SEQ and 4 ∈ NAT . Notice that (4, ∅) = (4).

16



• We conclude (2, (4, ∅)) ∈ SEQ by applying the ONEMORE rule
to (4, ∅) ∈ SEQ and 2 ∈ NAT . Notice that (2, (4, ∅)) = (2, 4).

• We conclude (4, 2, 4) ∈ SEQ by applying the ONEMORE rule to
(2, 4) ∈ SEQ and 4 ∈ NAT .

• We conclude (3, 4, 2, 4) ∈ SEQ by applying the ONEMORE rule
to (4, 2, 4) ∈ SEQ and 2 ∈ NAT .

3. General form of Induction Rules

The last example shows the general format of rules in an inductive
definition, which is as follows

e1 ∈ S1 ; e2 ∈ S2 ; · · · en ∈ Sn =⇒ e ∈ U

Each set Si is either the name of the set U being inductively defined,
or a set expression denoting any already defined set.

The conditions e1 ∈ S1, e2 ∈ S2, · · · , en ∈ Sn are called the premises of
the rule, and the e ∈ U is called the conclusion of the rule.

4. Example: Inductively defined functions

As we know a function is a set, a set of ordered pairs subject to the
“functional” condition (see Section 1 (19)).

We may define a function inductively as we have done above for sets.

Let us illustrate the idea with the Fibonacci function. The Fibonacci
function maps n ∈ NAT to the nth element in the Fibonacci sequence
of natural numbers. Remember (this has to do with rabbits ,) that the
Fibonacci sequence is defined as follows. The first and second element
in the sequence are both 1. From then on, the nth element in the
Fibonacci sequence is computed as the sum of the two previous ones.

1, 1, 2, 3, 5, 8, · · ·

The Fibonacci function fib then gives

fib(0) = 1
fib(1) = 1
fib(2) = 2
fib(3) = 3
fib(4) = 5
etc...

17



To define a function (such as fib) as an inductive set, we need to define
a set of ordered pairs a 7→ b where a is an argument value and b is the
corresponding function result.

In the case of the fib function is particularly easy to take care of with
an inductive definition, because it is very clear what is the stage by
stage construction rules needed!

First we need to introduce the two first values. It is clear that none of
these values are computed from the other, they are both seeds, really.

=⇒ 0 7→ 1 ∈ fib
=⇒ 1 7→ 1 ∈ fib

Recall that the function fib we are defining is a set of ordered pairs.
The two rules above state that the set fib must contain the pairs 0 7→ 1
and 1 7→ 1. This means that fib(0) = 0 and fib(1) = 1. Actually, we
could have written the rules above as

=⇒ fib(0) = 1
=⇒ fib(1) = 1

since saying a 7→ b ∈ F is the same as saying F (a) = b.

Now we need a construction rule, to generate new values for the func-
tion fib from “previous” ones. For the Fibonacci function, the rule is
simply

n 7→ a ∈ fib ; n+ 1 7→ b ∈ fib =⇒ (n+ 2) 7→ (a+ b) ∈ fib

This says that if we already know that (at a previous stage) fib(n) = a
and fib(n+ 1) = b, then we can define that fib(n+ 2) = a+ b.

fib(n) = a; fib(n+ 1) = b =⇒ fib(n+ 2) = a+ b

We now summarize our inductive definition for the function fib, now
labeling the rules with names.

FIB0 : =⇒ fib(0) = 1
FIB1 : =⇒ fib(1) = 1
FIBNEXT : fib(n) = a; fib(n+ 1) = b =⇒ fib(n+ 2) = a+ b

We can for example check that fib(4) = 5 by writing down the justifi-
cation, in terms of the available induction rules.

(a) We conclude 0 7→ 1 ∈ fib by the FIB0 rule.

18



(b) We conclude 1 7→ 1 ∈ fib by the FIB1 rule.

(c) We conclude 2 7→ 2 ∈ fib by applying the FIBNEXT rule to
0 7→ 1 ∈ fib and 1 7→ 1 ∈ fib introduced in (a) and (b).

(d) We conclude 3 7→ 3 ∈ fib by applying the FIBNEXT rule to
1 7→ 1 ∈ fib and 2 7→ 2 ∈ fib introduced in (b) and (c).

(e) We conclude 4 7→ 5 ∈ fib by applying the FIBNEXT rule to
2 7→ 2 ∈ fib and 3 7→ 3 ∈ fib introduced in (c) and (d).

5. Example: The sumupto function

We seek an inductive definition of the sumupto function such that

sumupto(k) = 1 + 2 + 3 + ...+ k

for any k ∈ NAT . Notice that this “definition” is not a precise one,
and uses “hand waving” notation such as “...”, etc.

We can provide a precise inductive definition as follows:

SUM0 : =⇒ 0 7→ 0 ∈ sumupto
SUMNEXT : n 7→ s ∈ sumupto =⇒ (n+ 1) 7→ (n+ 1 + k) ∈ sumupto

or, perhaps more readably,

SUM0 : =⇒ sumupto(0) = 0
SUMNEXT : sumupto(n) = s =⇒ sumupto(n+ 1) = n+ 1 + s

This inductive definition defines the intended function sumupto. For
example, we may check the justification that sumpupto(4) = 10

(a) We conclude 0 7→ 0 ∈ sumupto by the SUM0 rule.

(b) We conclude 1 7→ 1 ∈ sumupto by applying the SUMNEXT rule
to 0 7→ 0 ∈ sumupto introduced in (a).

(c) We conclude 2 7→ 3 ∈ sumupto by applying the SUMNEXT rule
to 1 7→ 1 ∈ sumupto introduced in (b).

(d) We conclude 3 7→ 6 ∈ sumupto by applying the SUMNEXT rule
to 2 7→ 3 ∈ sumupto introduced in (c).

(e) We conclude 4 7→ 10 ∈ sumupto by applying the SUMNEXT rule
to 3 7→ 6 ∈ sumupto introduced in (d).

19



6. Example: The len function

We seek an inductive definition of the let function, that given a sequence
of naturals, that is, an element of SEQ as defined above in 2, returns
the length of the sequence, for example:

len((1, 2, 3, 4)) = 4

So, we expect len ∈ SEQ→ NAT .

Here is our inductive definition for the function len.

LENEMPTY : =⇒ () 7→ 0 ∈ len
LENONEMORE : s 7→ l ∈ len =⇒ (h, s) 7→ (l + 1) ∈ len

or, perhaps more readably,

LENEMPTY : =⇒ len(()) = 0
LENONEMORE : len(s) = l ; h ∈ NAT = l =⇒ len(h, s) = (l + 1)

This definition inductively defines the intended function len. For ex-
ample, we may check the justification that len((4, 2, 4)) = 3.

Recall that (4, 2, 4) = (4, (2, (4, ())))! Then

(a) We conclude () 7→ 0 ∈ len by the LENEMPTY rule.

(b) We conclude (4) 7→ 1 ∈ len by applying the LENONEMORE rule
to () 7→ 0 ∈ len introduced in (a) and 4 ∈ NAT .

(c) We conclude (2, 4) 7→ 2 ∈ len by applying the LENONEMORE
rule to (4) 7→ 1 ∈ len introduced in (b) and 2 ∈ NAT .

(d) We conclude (4, 2, 4) 7→ 3 ∈ len by applying the LENONEMORE
rule to (2, 4) 7→ 2 ∈ len introduced in (c) and 4 ∈ NAT .

7. Top-down and Bottom-up justifications.

In the previous examples, we have given formal justifications of the
fact that an element e belongs to an inductive set I by showing the
sequence of rule applications that lead from the seed rules (the most
basic elements) to the final construction of e.

This style of presentation is called a bottom-up justification.

For example, the justification

(a) We conclude () 7→ 0 ∈ len by the LENEMPTY rule.

20



(b) We conclude (4) 7→ 1 ∈ len by applying the LENONEMORE rule
to () 7→ 0 ∈ len introduced in (a) and 4 ∈ NAT .

(c) We conclude (2, 4) 7→ 2 ∈ len by applying the LENONEMORE
rule to (4) 7→ 1 ∈ len introduced in (b) and 2 ∈ NAT .

(d) We conclude (4, 2, 4) 7→ 3 ∈ len by applying the LENONEMORE
rule to (2, 4) 7→ 2 ∈ len introduced in (c) and 4 ∈ NAT .

is bottom-up. It starts by the seed rule len(()) = 0 and then pro-
ceeds by rule application until the conclusion len((4, 2, 4)) = 3 of the
justification is reached.

However, we can also provide justifications the other way around.

We do that by starting from the element that we want to justify, and
proceeding backwards down to the seed rules.

For example, the following is the top-down version of the justification
above for len((4, 2, 4)) = 3.

(a) We conclude (4, 2, 4) 7→ 3 ∈ len because we can apply LENONEMORE
rule to (2, 4) 7→ 2 ∈ len and 4 ∈ NAT .

(b) We conclude (2, 4) 7→ 2 ∈ len because we can apply LENONEMORE
rule to (4) 7→ 1 ∈ len and 2 ∈ NAT .

(c) We conclude (4) 7→ 1 ∈ len because we can apply LENONEMORE
rule to () 7→ 0 ∈ len and 4 ∈ NAT .

(d) We have () 7→ 0 ∈ len by the LENEMPTY rule.

8. Example: The concat function

We seek an inductive definition of the concat function. The concat
function accepts as arguments two sequences and gives the sequence
obtained by concatenating them. For example,

concat((), (1, 9)) = (1, 9)
concat((3, 4), (4, 6)) = (3, 4, 4, 6)
concat((1), (2)) = (1, 2)

Clearly, we have concat ∈ (SEQ× SEQ)→ SEQ.

Here is an inductive definition for the function concat.

CEMPTY : s ∈ SEQ =⇒ ((), s) 7→ s ∈ concat
CSTEP : (s, v) 7→ r ∈ concat ; h ∈ NAT =⇒ ((h, s), v) 7→ (h, r) ∈ concat

21



or, perhaps more readably,

CEMPTY : s ∈ SEQ =⇒ concat((), s) = s
CSTEP : concat((s, v)) = r ; h ∈ NAT =⇒ concat(((h, s), v)) = (h, r)

Let us see the justification that concat((4, 2), (1, 4)) = (4, 2, 1, 4). Re-
call that (4, 2) = (4, (2, ∅)), (4, 2, 1, 4) = (4, (2, (1, (4, ∅)))), etc !

This time, we write a top-down justification:

(a) We conclude concat((4, 2), (1, 4) = (4, 2, 1, 4) because we can ap-
ply the CSTEP rule to concat((2), (1, 4) = (2, 1, 4) and 4 ∈ NAT .

(b) We conclude concat((2), (1, 4) = (2, 1, 4) because we can apply the
CSTEP rule to concat((), (1, 4) = (1, 4) and 2 ∈ NAT .

(c) We conclude concat((), (1, 4) = (1, 4) by the the CEMPTY rule.

22



1.4 Finite Sets, Infinite Sets, and Computability

The notions of finiteness and infiniteness play a central role in the study
of computation. Right from the start, it allows us to separate the notion
of function (as we have modeled mathematically with sets in the previous
sections), which is an idealized concept, and the notion of algorithm, which
is a very concrete computational method or machine.

Think of a given function, such as concat function defined above as a set,
using induction. The concat function defined thus is a set of tuples, a corre-
spondence between argument values and results, that defines the extension
of the function. This extension is an infinite set, with elements such as

((1, 9, 2), (2, 3)) 7→ (1, 9, 2, 2, 3) ∈ concat
((), ()) 7→ () ∈ concat
((1, 1, 1, 1, 1), (2, 2, 2, 2, 2)) 7→ (1, 1, 1, 1, 1, 2, 2, 2, 2, 2) ∈ concat
· · ·

It is impossible to write down the full table of the concat function, obviously.
But we can easily believe that such set exists at least in the world of our
imagination and the current body of mathematical knowledge.

A very different thing would be an algorithm implementing the function
concat. An algorithm is a mechanical process, that must be physically realiz-
able by some kind of machine, build from a finite set of resources, consuming
a finite set of energy for each run, and so on. An algorithm does not contain
an infinite lookup table of correspondences between inputs and outputs, it
actually needs to calculate the output from the input, using a series of me-
chanical finite operations, for example, using the instructions of a processor
inside a computer.

So an algorithm for computing concat must describe a very concrete and
physically realizable information manipulating process, defined with some
kind of machine or programming language. Such process, given two con-
crete sequences can laboriously compute a new sequence consisting of their
concatenation. It is easy to define such a process, even in a programming
language independent way:

1. pick the two input sequences s1 and s2

2. count the elements in s1 and s2 giving say l1 and l2

3. allocate space for a constructing a new sequence r long enough to keep
the result (l1 + l2) elements.

4. copy the elements of s1 in sequence to the first l1 elements of r.

23



Figure 2: Me thinking about all the concat function pairs (a, b) 7→ ab.

5. copy the elements of s2 in sequence to the elements of r in positions
l1, l1 + 1, · · · , l1+l2 .

6. output the sequence r

We have then discussed two very different concepts:

• a function that specifies the concat function, which is a mathematical
specification object, consisting of an infinite amount of information,
and

• an algorithm that implements the concat function, which is a mechan-
ical procedure that allows a ”dummy” machine to compute its output
from any given input.

Another example, may be a function solution that given a polynomial
with integer coefficients returns TRUE if the polynomial has a solution or
FALSE if it does not. We can imagine that solution receives its input in
some textual format, and parses it (as say, excel would do).

24



Figure 3: A machine implementing the concat function. It really needs to do
some work for each input it is given, there is no place in physical reality for
the machine to store an infinite table with all the pairs (a, b) 7→ concat(a, b).

The function solution is very easy to define, say

(∃ ~up
∑p

i1
ki ∗ uini = v)⇒ (“

∑p
i1
ki ∗ xini = v”) 7→ TRUE ∈ solution

(∀ ~up
∑p

i1
ki ∗ uini 6= v)⇒ (“

∑p
i1
ki ∗ xini = v”) 7→ FALSE ∈ solution

Every polynomial of the kind considered either has a solution or it does not
have a solution, so this is a perfectly well defined total function.

But is there a well defined algorithm implementing this function ?
Indeed, may we find an algorithm actually able to compute the solution

function, and effectively check, in a finite number of steps of computation, if
any polynomial given as input as a solution or not?

This kind of question may be answered in several ways.
On possibility is to really give a description of an algorithm, as we did

above for the concat function, or in some programming language. We may
then convince ourselves that the algorithm is correct, and that’s all.

Other possibility is that the current state of knowledge does not yet help
us to define the algorithm, but it may be the case that some algorithm may
be found, if we get smart enough.

Other possibility is that it will never be possible to give an algorithm, just
because the solution function cannot be computed by algorithmic means. In
this case, we are not thinking of any limitation of the current state of the
knowledge, or that we are not smart enough currently to come up with an

25



algorithm, but of the absolute impossibility of solving the problem using any
finite method of computation whatsoever!

There are necessarily many functions we can reasonably conceive that
cannot be implemented by algorithmic means.

The simplest way to see this is just by counting: there are many more
possible functions that algorithms!

Hum .. wait?! How can that be?
Both the set of possible functions and of algorithms is infinite!
How can we say that there are more possible functions than algorithms?
To answer this questions, we need to review a bit the theory of infinite

cardinals, and get a better grasp of what does it mean to be “finite” and
“infinite”. We will also learn that there are several levels of infinity, and that
the cardinal of the set of natural numbers is but the ”smallest” infinite, in
an infinitely increasing sequence of infinite cardinal numbers.

Understanding these basis concepts of infinity is very important to rec-
ognize whether a problem is computable by an algorithm, or if it is not (in
which case we call the problem “undecidable”).

1.5 Equipotency of Sets

Opposed to the familiar notion of finiteness, comes the notion of infinite. The
notion of infinite is fairly remote to our everyday experience, and it turns
out that is not often studied in a precise way in the usual undergraduate
curriculum, perhaps just a bit on some math courses. Even then, you often
become aware that sets such as the set of natural numbers, or the set of real
numbers are infinite (they contain an infinite number of elements), but what
does this really mean? How can we actually count the number of elements of
an infinite sets? Are all infinite sets of the same size? How can we compare
the size of two infinite sets?

An idea that works for comparing the size of both finite and infinite sets
is in fact rather simple, and is due to the founders of set theory. We say that
two sets A and B are equipotent (roughly, have the same, finite or infinite,
number of elements) if there is a bijective function from A to B.

Remember:

• A function f ∈ A→ B is injective if for every y ∈ codom(f) there is a
unique element x in A such that f(x) = y. In other words, no element
in generated by f in B can be the image of two distinct elements of A.
Formally:

Injective(f) , ∀x, z ∈ A,∀z ∈ B.f(x) = y ∧ f(z) = y ⇒ x = z

26



• A function f ∈ A→ B is sobrejective if for every y in B there is some
element x in A such that f(x) = y. In other words, all elements in B
are the image through f of some element of A. Formally:

Sobrejective(f) , ∀y ∈ B, ∃x ∈ A.f(x) = y

• A function f ∈ A→ B is bijective if f is both injective and sobrejective.
Formally:

Bijective(f) , Injective(f) ∧ Sobrejective(f)

A bijective function between two sets A and B puts every element of A in
unique correspondence with some element of B. As if assigning every element
of A a kind of proxy that plays its role in B. Such a bijective function really
witnesses the fact that A and B must have essentially the same number of
elements, since the correspondence is bijective.

It is pretty clear how the idea works in the case of finite sets. For example,
consider the sets A = {a, b, c} and B = {1, 2}.

27



2 Computational Machines and Specifications

We have seen in the previous chapter how various kinds of computational
systems may be modeled by set-theoretical structures.

Typically, such structures model a set of states, and a collection of func-
tions and relation that model the dynamics of the system, namely, the oper-
ations that change the state, and cause the system to evolve in time.

In particular, a computation of the system is modeled by a sequence of
applications of functions or relations between states.

In this chapter we will study a very general way of modeling computa-
tional systems of the above kind, but that only possess a finite number of
states. As we will see these models, known as finite automata, are already
interesting enough and can be used to model many useful computational sys-
tems. For example, consider the following graphical representation of a finite
automaton, representing the correct sequence of operations one may perform
in a file.

1 2 3
open

close

read

write

It contains three states 1, 2 and 3. The state 1, represented with a
simple incoming arrow, in the initial state. The state 3, represented with
two concentric circles is a final state. There is also an intermediate state 2,
which is neither initial nor final. The labeled arrows represent transitions of
the automaton, the transitions are labeled with elements called actions (or
symbols).

A computation of this automaton is represented by the trace (or word),
a sequence of actions (or symbols). An example of a valid computation is

open read read write close

Indeed starting from the initial state 1, it is possible to reach the final state
3, by performing each one of the given actions in the sequence, from left to
right. On the other hand, the trace

open open

does not constitute a correct computation of the same automaton. Indeed,
after going from the initial state to the second by performing open, we reach

28



a state where no transition labeled by open exists. Thus, we say the the
automaton rejects (or does not accept) the trace open open. This may be
understood as meaning that a file cannot be opened twice.

[ to be completed ]

2.1 Deterministic Finite Automata

1. Deterministic Finite Automata (DFA) are very simple models of com-
putation. Each DFA represents a computational system (software or
hardware) characterized by a finite set of states, and that evolves from
state to state by performing actions (also called transitions), also se-
lected from a finite set of possible transitions.

Formally, a DFA A is a structure

A = 〈S,Σ, s, δ, F 〉

where

(a) S is the finite set of states of A

(b) Σ is the finite set of actions (or symbols) of A

(c) s is state in S, the initial state of A

(d) δ is the transition function of A, that given a current state in S
and an action/symbol in Σ, indicates the (unique) next state in S
to which the automata should transition.

So we have δ ∈ S×Σ→ S where δ is in general a partial function.

(e) F is a subset of S, the set F of final states of A.

For example, the DFA sketched in Figure above may be formally rep-
resented, as explained in the previous definition, as the following struc-
ture:

AFILE = 〈S,Σ, s, δ, F 〉

S = {s1, s2, s3}
Σ = {open, read, write, close}
s = s1
δ = {(s1, open)→ s2, (s2, read)→ s2,

(s2, write)→ s2, (s2, close)→ s3}
F = {s3}

29



It is some times practical to represent the transition function of an DFA
by a matrix or array, as we illustrate below:

open write read close

s1 s2 − − −
s2 − s2 s2 s3
s3 − − − −

The entries where δ(s, a) is undefined are marked −.

2. A computation of a DFA is any sequence of actions it may perform,
starting from the initial state s, and leading to any final state in F .

For example, the DFA AFILE above has, among many others, the
following computations:

open close

open read read close

open read write read close

We may represent the system configuration of a DFA by a pair con-
sisting of a marked sequence of symbols, and the current state. In a
marked sequence of symbols we mark with a vertical bar | the separa-
tion between the actions / symbols already performed and the actions
/ symbols still to be performed, and where the first symbol to the right
of | is the next to be processed. We may imagine that the current state
is the analogous of the program counter, in a standard processor, and
the marked sequence of actions some kind of input buffer.

So, for our current example with the DFA AFILE, we may consider the
initial system configuration

(|open close, s1)

After one transition, because δ(s1, open) = s2, the configuration evolves
to

(open|close, s2)
After one more transition, because δ(s2, close) = s3, the configuration
evolves to

(open close|, s3)
Since we have reached the end of the sequence and s3 is a final state
(s3 ∈ F ), we can say that the sequence of symbols open close is a
computation of AFILE. There are several different ways to say this,
namely

30



• the sequence open close is a computation of AFILE.

• the sequence open close is accepted by AFILE.

We may use any of these ways, depending on the context.

On the other hand, the following sequences of symbols / actions are
not computations of AFILE.

open read

open read open close

In the first case, we may try to obtain a computation starting from the
configuration

(|open read, s1)

After on step, we get to

(open|read, s2)

After other step, we get to

(open read|, s2)

We have reached the end of the sequence of symbols, but did not reach
a final state. Indeed, the computation attempt did not terminate, it
got stuck in the non-final state s2. So, the sequence open read is not
accepted by the DFA AFILE.

Likewise, consider the sequence open read open close. We start off as

(|open read open close, s1)

After one step, we get to

(open|read open close, s2)

After one more step, we get to

(open read|open close, s2)

Now the problem is that the next symbol to process in open, but un-
fortunately the transition function δ does not define any valid transi-
tion. Indeed δ(s2, open) is not defined! So, this computation atempt
did not properly terminate as well, and we conclude that the sequence
open read open close is not accepted by the DFA AFILE .

31



3. DFAs are very convenient also because they lead to very efficient and
simple implementations of trace recognizers. Given an array represen-
tation of the transition function, we may simply implement the Java
like pseudo-code below, to check if an input sequence input is accepted
by the given DFA.

boolean accept(Word input) {

State currentState = initialState;

while input.hasNext() {

State nextState = delta[ currentState, input.next() ] ;

if (nextState.undefined()) return false;

currentState = nextState;

}

return (currentState.isFinal())

}

We have here represented a word by an iterator of symbols. Of course,
other representations are possible.

4. For any DFA A = 〈S,Σ, s, δ, F 〉, it makes sense to talk about the set of
all computations of Am, or, equivalently, about the set of all sequences
of symbols accepted by A. This set of sequences, is called the language
accepted by the DFA A, noted L(A).

L(A) = {w ∈Words(Σ) | w is accepted by the DFA A}

This is not a precise definition, since we did not yet explain what is
the set Words(Σ) and what does it really mean to ”be accepted”. For
that, we need to introduce some few concepts.

2.2 Alphabets, words, traces, and (formal) languages

We have talked about sets of actions, sequences of actions, symbols, etc,
when discussing DFAs.

All these notions involving sequences of symbols, are abstracted and stud-
ied in theoretical computer science by the notion of ”formal language”. The
concept of formal language is very general and useful, and is not just con-
nected to ”languages” in the usual sense. We will give some examples of
applications below. But before, we introduce a few useful definitions.

1. Alphabet

32



An alphabet is just a finite set of symbols (also actions). We may define
alphabets as we wish, typically by enumeration. For example,

ΣFILE = {open, read, write, close}
DIGITS = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, }

2. Word (or trace)

A word (or trace) over an alphabet Σ is a finite, possibly empty, se-
quence of symbols taken from Σ.

We write () for the empty word. Some texts also represent the empty
word by λ or ε.

Here are some examples:

close close write write is a word over ΣFILE.

open read close close is a word over ΣFILE.

open 1 2 close is not a word over ΣFILE.

() is a a word over ΣFILE.

1 1 1 1 is a word over DIGITS.

() is a word over DIGITS.

1 a b 1 is not a word over DIGITS.

3. Extending one word by one symbol.

Given a word u over Σ and a symbol a ∈ Σ, we denote by au the word
over Σ obtained by adding a before the first symbol of u.

For example, if u is 1 1 1 1 and a is 3 then au is 3 1 1 1 1.

For example, if u is () and a is 2 then au is 2.

Note that in rigor one thing is a symbol, and other is a word with
just one symbol (like one thing is an integer, and other thing is a list
with length one containing the same integer). We shall never make
confusions, though.

4. The set Words(Σ) of all words (or traces) over the alphabet Σ.

Given an alphabet Σ, we may easily define the set Words(Σ) of all
words over the alphabet Σ, using induction, as discussed in the first
chapter.

⇒ () ∈Words(Σ)
w ∈Words(Σ) ∧ a ∈ Σ⇒ aw ∈Words(Σ)

33



It should be pretty clear that whenever the alphabet Σ is non empty,
the set Words(Σ) of all words over Σ is countably infinite.

We may now define what is a (formal) language over an alphabet.

5. Formal language over an alphabet Σ

Given an alphabet Σ, a formal language over Σ is any subset L of
Words(Σ). So the set Lang(Σ) of all languages over Σ is

Lang(Σ) = ℘(Words(Σ))

For a simple example, we may consider the set PRIMES of all words in
Words(DIGITS ) that represent prime numbers. This is the example
of what we cal a ”formal language”. Then, we know that

11 ∈ PRIMES

but
22 6∈ PRIMES

although 11 ∈ DIGITS and 22 ∈ DIGITS .

As another example, we may consider the set L(AFILE ) of all words
over ΣFILE that are accepted by the DFA FILE, presented above.
Then, we know that

open read close ∈ L(AFILE )

but
open open 6∈ L(AFILE )

even if clearly open read close ∈ ΣFILE and open open ∈ ΣAFILE .

These are two simple examples of formal languages. Obviously, a lan-
guage may be finite or infinite. It is easy to see that both PRIMES
and L(AFILE ) are infinite languages.

We may now get back to AFDs, and to the precise definition of what
does it mean for a word / trace to be accepted by an automaton.

2.3 Language Accepted by a DFA

6. Acceptance of a word by a AFD A

Given any DFA A = 〈S,Σ, s, δ, F 〉, we may define a relation

stepA ⊆ SA ×Words(ΣA)× SA

34



that represents the multistep transition relation for the DFA A.

Intuitively, we want the relation stepA to be defined so that (s, w, s′) ∈
stepA if and only if the DFA A can transition from state s to state s′

by processing the symbols in w in the indicated sequence.

For example, getting back to our running example DFA AFILE, we
would have

(s2, (), s2) ∈ stepAFILE

(s1, open close, s3) ∈ stepAFILE

(s1, open close, s2) 6∈ stepAFILE

(s2, read read, s2) ∈ stepAFILE

(s2, read read write, s2) ∈ stepAFILE

(s2, open, s2) 6∈ stepAFILE

Given any DFA A, it is easy to define the relation stepA inductively as
follows

s ∈ SA ⇒ (s, (), s) ∈ stepA

(s′, u, s′′) ∈ stepA ∧ a ∈ ΣA ∧ δA(s, a) = s′ ⇒ (s, au, s′′) ∈ stepA

7. Language accepted by an AFD A. Given the concepts presented above
we may now give a precise definition for the language L(A) accepted
by an AFD A = 〈S,Σ, s, δ, F 〉, intuitively described above by

L(A) = {w ∈Words(Σ) | w is accepted by the DFA A}

Indeed, we may simply set

L(A) = {w ∈Words(Σ) | ∃f.f ∈ FA ∧ (sA, w, f) ∈ stepA}

Reading off this precise definition, L(A) is the set of words that can
induce a sequence of computation steps from the initial state sA to some
final state f ∈ FA, as conveniently expressed by the stepA relation.

2.4 Regular Languages

A language for which it is possible to construct a DFA that accepts it
is called a regular language.

DFAs have limited expressive power, mainly because they only possess
a finite number of states. There are many languages which can not
be accepted by DFAs. For example, the language PRIMES mentioned
above is not regular.

35



Other simple example of non-regular languages are the so-called ”paren-
thesis” languages. A ”parenthesis” language is a language with a nested
block structure, like the language with arithmetic expressions with
parentheses (1 + ..(...)... ∗ 3) , or a programming language with nested
blocks, such as Java {{...}}. Intuitively, to make sure that all open-
ing parenthesis are matched by corresponding closing parenthesis, a
DFA would need to be prepared to ”know” in every state how many
parenthesis are currently open. But since a DFA only contains a fi-
nite number of states N , it could never handle an expression with say
N + 10 nested blocks of parenthesis. We will study later in this course
more powerful (stack-based) machines, which will be able to accept
non-regular languages as the ones illustrated here.

Still, there many interesting computational systems that may be mod-
eled by DFAs, and the simplicity of DFAs are attractive and convenient.

For example, the language of all words over DIGITS that represent
numbers divisible by k, where k is any natural number, is regular.

The language over the UNICODE character set that represents all valid
descriptions of floating numbers in IEEE754 format is regular.

You will see many other examples in the exercises.

2.5 Specifying Languages with Regular Expressions

We have seen how to define machines that can recognize formal lan-
guages, namely deterministic finite automata. While DFAs have a sim-
ple operational interpretation, as some kind of “low level machines”,
they are not so convenient to construct or specify in a user friendly
way. The situation is similar to what happens with low level hardware
processors. While a processor can easily compute the value of a com-
plex arithmetic expression, or insert a node in a data structure, it is
much more convenient to express the latter with an algebraic expression
such as “(a*b)+2” than with a sequence of machine code instructions,
even if both the algebraic expression and the sequence of machine code
instructions will denote the same computation.

It turns out (perhaps surprisingly) that regular languages can be ex-
pressed by a kind of algebraic expressions, known for very good reasons
as regular expressions.

8. Regular Expressions

36



Regular expressions are a specification (meta-)language for defining
formal languages.

There are the following forms of regular expressions:

• The expression () denotes the (one word) language that only con-
tains the empty word.

• The expression a, where a is a symbol / action of some alphabet,
denotes the language that only contains the one-symbol word a.

• The expression ∅, denotes the empty language (that is the lan-
guage without any word, the empty set).

These are the basic regular expressions. To denote more complex
languages, we now introduce three operators to construct new
languages from existing ones.

• Given expressions E and F , the expression (EF ) denotes the set
of words that result from concatenating some word in the language
denoted by E with some word in the language denoted by F .

• Given expressions E and F , the expression (E + F ) denotes the
set of words that are either some word in the language denoted
by E or some word in the language denoted by F .

• Given an expression E, the expression (E∗) denotes the set of
words that are the concatenation of zero or more words in the
language denoted by E.

We may use parenthesis to disambiguate expressions. To eliminate
redundant parenthesis, we assume that E∗ is stronger that EF , and
EF is stronger that E + F . So that for example

a ∗ b+ cd∗(a+ b)

means
((a∗)b) + ((c(d∗)(a+ b))

We may easily describe the language accepted by the DFA AFILE
presented above with a regular expression over the alphabet ΣFILE:

open(read + write)∗close

Notice how this regular expression is much more concise than the de-
scription of the DFA AFILE. On the other way, a regular expression
does not give us any hint on how to check if a word belongs to the

37



language it denotes, unlike a DFA, which immediately provides an al-
gorithm. We will see below how to close this gap.

In particular, we will see that any regular language (accepted by a
DFA) can be represented by a regular expression, and conversely that
any language denoted by a regular expression can be implemented by
a DFA.

But before that, we will now define the set RegExp(Σ) of regular ex-
pressions over an alphabet Σ in a precise way, and characterize the
language denoted by any such regular expression.

9. Language specified by a regular expression

The set RegExp(Σ) is defined inductively as follows:

⇒ () ∈ RegExp(Σ)
a ∈ Σ⇒ a ∈ RegExp(Σ)
E ∈ RegExp(Σ) ∧ F ∈ RegExp(Σ)⇒ (EF ) ∈ RegExp(Σ)
E ∈ RegExp(Σ) ∧ F ∈ RegExp(Σ)⇒ (E + F ) ∈ RegExp(Σ)
E ∈ RegExp(Σ)⇒ (E∗) ∈ RegExp(Σ)

We know that any regular expression E ∈ RegExp(Σ) specifies a lan-
guage over Σ. In fact, we will denote by L(E) the language denoted by
the expression E.

For example
L(read + write) = {read, write}

and
L((read + write)∗) = Words({read, write})

We can define the set L(E) for any regular expression E ∈ RegExp(Σ)
by induction.

First, given a language L, we may define the set loop(L) of all words
obtained by concatenating zero or more words from L. This is useful
for defining the meaning of a regular expression of the form E∗.

⇒ () ∈ loop(L)
u ∈ L ∧ v ∈ loop(L)⇒ uv ∈ loop(L)

Given this, we may provide the inductive definition of L(E) for any

38



E ∈ RegExp(Σ) as follows:

⇒ L(()) = {()}
a ∈ Σ⇒ L(a) = {a}
L(E) = LE ∧ L(F ) = LF ⇒ L(EF ) = {uv | u ∈ LE ∧ v ∈ LF}
L(E) = LE ∧ L(F ) = LF ⇒ L(E + F ) = LE ∪ LF

L(E) = LE ⇒ L(E∗) = loop(LE)

2.6 Compiling any Regular Expression to a DFA

We have claimed that any regular expression can be “compiled” or
translated to a DFA that recognizes the language denoted by it. In
fact, we can present an algorithm (a “compiler”), that given a regular
expression E generates a equivalent DFA in this sense.

In fact, the translation process is very simple and intuitive. How shall
we proceed? In general, a regular expression may be very complex! A
typical way to deal with this situation is to proceed by composition of
parts, exactly as compilers for programming languages work. To cope
with the structural complexity of programming languages, a compiler
translates each form of the source language in a way that does not
depend on the parts of each given construct. For example, consider a
if the else construct:

ifB thenC1 else, C2

When a compiler translates such a command into machine code, it does
not really need to look on the translation of the sub expressions or sub
commands B, C1 and C2. Essentially, it assumes that somehow these
parts will be translated into appropriate sequences of machine code in-
structions, according to the general translation procedure, recursively.

B 7→ code(B)
C1 7→ code(C1)
C2 7→ code(C2)

It then assembles the various pieces, by adding the “glue” code to put
together the final code for the given if then else command. Typically
this would involve adding machine code instructions to check the con-

39



dition, and jump to the appropriate block of code. For example:

code(B)
jmpnz LabelElse
code(C1)
jmp Done
code(C2)

Done : nop

The idea behind our translation of regular expressions will follow the
same recipe. We first provide a way of translating the basic regular
expressions, and then a systematic pattern of translating the complex
constructs of concatenation (EF ), union (E + F ) and iteration E∗.

We then seek a function Compile that given a regular expression E
yields a DFA Compile(E). We proceed by looking to some simple
cases.

• Case of ().

If the regular expression we want to translate is (), what would
be the corresponding DFA?

The answer is simple, we may set:

More precisely,

Compile( () ) = 〈S,Σ, s, δ, F, 〉

where
S = {1}
Σ = ∅
s = 1
δ = ∅
F = {1}

• Case of a, with a ∈ Σ

If the regular expression we want to translate is a for some symbol
a, what would be the corresponding DFA?

The answer is simple, we may set:

More precisely,

Compile(a) = 〈S,Σ, s, δ, F, 〉

40



where
S = {1, 2}
Σ = {a}
s = 1
δ = {(1, a) 7→ 2}
F = {2}

• Case of (EF ), where E and F are some regular expressions.

If the regular expression we want to translate is of the form (EF )
for some regular expressions E and F , what would be the corre-
sponding DFA?

Reasoning as sketched above, by composition of elementary pieces,
we may assume that we have already produced DFAs for E and
F , say

Compile(E) = 〈SE,ΣE, sE, δE, FE, 〉
Compile(F ) = 〈SF ,ΣF , sF , δF , FF , 〉

The question now is how to produce a DFA for the expression
EF , by assembling the DFAs generated for E and F . Intuitively
the solution is simple, since a word of L(EF ) is a word of L(E)
concatenated with a word of L(F ), we may try to compose the
DFAs in sequence, merging the final states of Compile(E) with the
initial state of Compile(F ). In this way, the resulting DFA would
work as follows: it would start in the initial state of Compile(E),
and continue until a state in FE is reached. It would then have
accepted the first part of a given word. Then it would somehow
skip to the initial state of Compile(F ) and continue. If a final
state of Compile(F ) is reached, the second part of the given word
would have been accepted.

This idea is fine, but the difficulty is: how do we express the
jump from the final state of Compile(E) to the initial state of
Compile(F )? This would require some kind of special transition
in the DFA, a transition that would allow it to move from a state
to another state without consuming any symbol.

This need suggests the introduction of a special kind of Finite
Automaton, where such moves are allowed. They are called Non-
Deterministic Finite Automata (NFA), and we will introduce them
in greater detail in the next item.

41



2.7 Non Deterministic Finite Automata

A Non-Deterministic Finite Automata is a finite automata that besides
the simple transitions that we have discussed for DFAs also permits
transitions from one state to other state without consuming any symbol
from the input stream.

We call to such transitions ()-transitions or ε-transitions.

Moreover, we also allow several transitions from one state to other
states labelled by the same label (either a symbol or (). This is from
where the “non-determinism” comes from.

Let us look to an example. Consider the NFA in Figure.

We check that the word a b is accepted. We start off as

(|a b, s1)

After one step, we get to
(a|b, s2)

After one more step, we get to

(a b|, s3)

This was pretty similar to the DFA case. Now, for something different,
we check that the word a c d is accepted. We start off as

(|a c d, s1)

After one step, we get to
(a|c d, s2)

But now, we move to
(a|c d, s4)

without skipping any symbol in the input. We do that because there
is a transition from s2 to s4 labeled with the empty word (). We can
now continue, and get to

(a c|d, s5)

and, finally, reach a final state

(a c d|, s3)

For another example, consider now the following NFA.

42



It accepts the language {talk mary, talk joe}.
Notice that a NFA somehow seems to need to “guess” what is the
correct path it must choose, in order to accept a word.

But that should not worry us for now. We say that a NFA accepts a
word just in case there is some sequence of transitions from the initial
state to some final state. We may imagine that the NFA will explore
all paths somehow, and will always find an acceptance path, if there is
one.

We may think that this would be terribly inefficient.

But in fact, it is not! We will later see that any NFA can be converted
to a DFA that recognizes the same language, and that, of course, is no
longer non-deterministic! This means that we may use NFAs to spec-
ify languages, with much more freedom than with DFAs, but without
loosing efficiency or practical use.

So, NFAs are not introduced to complicate things, but actually to make
things easier! In particular, they help us quite a lot to define the
translation from regular expressions to finite automata: as we have
seen, being able to define ()-transitions is very useful, for example,
to construct an automaton to recognize (EF ) given an automata to
recognize E and another automaton to recognize F .

We we will see, ()-transitions will also be very helpful in the cases
of (E + F ) and E∗. Before continuing with that, we give the formal
definition of NFA. Formally, a NFA A is a structure

A = 〈S,Σ, s,∆, F 〉

where

(a) S is the finite set of states of A

(b) Σ is the finite set of actions (or symbols) of A

(c) s is state in S, the initial state of A

(d) ∆ is the transition relation of A, that given a current state in S
and an action/symbol in Σ or the empty word () indicates a next
state in S to which the automata should transition.

So we have ∆ ⊆ S × (Σ ∪ {()})× S.

(e) F is a subset of S, the set F of final states of A.

The key difference between a DFA and a NFA is obviously in the way
transitions are defined. While in the case of DFA, the transitions are

43



given by a partial function δ ∈ S × Σ → S, in the case of NFAs, we
must provide a relation ∆ ⊆ S × (Σ ∪ {()})× S.

The relation ∆ is a set of triples (s, u, s′) where s and s′ are states, and
u is either a symbol in Σ or the empty word. These triples define the
possible transitions in the NFA.

Notice that in a NFA there can be more than transition from a given
state labeled by the same symbol or by the empty word. Look to the
following formal definitions of the NFAs sketched above

•
Sample = 〈S,Σ, s,∆, F 〉

where

S = {1, 2, 3, 4, 5}
Σ = {a, b, c, d}
s = 1
∆ = {(1, a, 2), (2, b, 3), (2, (), 4), (4, c, 5), (5, d, 3)}
F = {3}

•
Talkie = 〈S,Σ, s,∆, F 〉

where
S = {1, 2, 3, 4, 5, 6, 7}
Σ = {talk,mary, joe}
s = 1
∆ = {(1, (), 2), (2, talk, 3), (3, joe, 4),

(1, (), 5), (5, talk, 6), (6,mary, 7)}
F = {4, 7}

As we have done for DFAs, for any NFA A, it is easy to define the
multi-step transition relation stepA inductively as follows:

s ∈ SA ⇒ (s, (), s) ∈ stepA

(s′, u, s′′) ∈ stepA ∧ a ∈ ΣA ∧ (s, a, s′) ∈ ∆A ⇒ (s, au, s′′) ∈ stepA

(s′, u, s′′) ∈ stepA ∧ (s, (), s′) ∈ ∆A ⇒ (s, u, s′′) ∈ stepA

Given the concepts presented above we may now give a precise defini-
tion for the language L(A) accepted by an NFA A = 〈S,Σ, s,∆, F 〉,
intuitively described above by

L(A) = {w ∈Words(Σ) | w is accepted by the NFA A}

44



Indeed, we may simply set

L(A) = {w ∈Words(Σ) | ∃f.f ∈ FA ∧ (sA, w, f) ∈ stepA}

Reading off this precise definition, L(A) is the set of words that can
induce a sequence of computation steps from the initial state sA to some
final state f ∈ FA, as conveniently expressed by the stepA relation.

We see that the definition of L(A) for a NFA A is superficially identical
to the definition of language accepted by a DFA. The additional ex-
pressiveness comes from the fact that stepA is now non-deterministic,
that is, there may be several states s′ such that stepA(s, w, s′), for some
fixed s and w. While for a DFA, there is only at most one state s′ such
that stepA(s, w, s′), for some fixed s and w.

2.8 Compiling any Regular Expression to a DFA

We now continue our presentation of the translation between a regular
expression and a DFA. But, we will now take a very useful intermediate
step. Rather than translating into a DFA, we will translate into a NFA.
This will make our life easier, and without any inconvenience. We will
show later how to convert a NFA into an equivalent DFA. This whole
method will then provide us a way of translating (or compiling) a regu-
lar expression into a DFA, by going through a NFA as an intermediate
step. Sometimes in good science and engineering, we need to back up
a bit, so to better jump ahead !

We start by summarizing what we have already found, but recasting
to the setting of NFAs.

• Case of ().

If the regular expression we want to translate is (), what would
be the corresponding NFA?

The answer is simple, we may set:

More precisely,

Compile( () ) = 〈S,Σ, s, δ, F, 〉
where

S = {1}
Σ = ∅
s = 1
∆ = ∅
F = {1}

45



• Case of a, with a ∈ Σ

If the regular expression we want to translate is a for some symbol
a, what would be the corresponding NFA?

The answer is simple, we may set:

More precisely,

Compile(a) = 〈S,Σ, s,∆, F, 〉

where
S = {1, 2}
Σ = {a}
s = 1
∆ = {(1, a, 2)}
F = {2}

• Case of (EF ), where E and F are any regular expressions.

We continue our reasoning, and assume that we have already pro-
duced NFAs for E and F , as follows

Compile(E) = 〈SE,ΣE, sE,∆E, FE, 〉
Compile(F ) = 〈SF ,ΣF , sF ,∆F , FF , 〉

We assume that the sets SE and SF are disjoint. We can always
assume that, even if we need to change the name of some states.

Now, to define a NFA that accepts (EF ) we let

Compile(EF ) =
〈
S(EF ),Σ(EF ), s(EF ),∆(EF ), F(EF ),

〉
where

S(EF ) = SE ∪ SF

Σ(EF ) = ΣE ∪ ΣF

s(EF ) = sE
∆(EF ) = ∆E ∪∆F ∪ {(s, (), sF ) | s ∈ FE}
F(EF ) = FF

• Case of (E + F ), where E and F are any regular expressions.

Again, assume that we have already produced NFAs for the regular
expressions E and F , as follows

Compile(E) = 〈SE,ΣE, sE,∆E, FE, 〉
Compile(F ) = 〈SE,ΣE, sE,∆E, FE, 〉

46



Again, we assume that the sets SE and SF are disjoint.

Now, to define a NFA that accepts (E + F ) we let

Compile(E + F ) =
〈
S(E+F ),Σ(E+F ), s(E+F ),∆(E+F ), F(E+F ),

〉
where s(E+F ) is a new state, not in SE ∪ SF , and

S(E+F ) = {s(E+F )} ∪ SE ∪ SF

Σ(E+F ) = ΣE ∪ ΣF

∆(E+F ) = ∆E ∪∆F ∪ {(s(E+F ), (), sE), (s(E+F ), (), sF )}
F(E+F ) = FE ∪ FF

• Case of (E)∗, where E is any regular expression.

Again, assume that we have already produced a NFA for the reg-
ular expression E as follows

Compile(E) = 〈SE,ΣE, sE,∆E, FE, 〉

Now, to define a NFA that accepts (E∗) we let

Compile(E∗) =
〈
S(E∗),Σ(E∗), s(E∗),∆(E∗), F(E∗),

〉
where s(E∗) is a new state, not in SE, and

S(E∗) = {s(E∗)} ∪ SE ∪ SF

Σ(E∗) = ΣE

∆(E∗) = ∆E ∪ {(s(E∗), (), sE)} ∪ {(f, (), s(E∗)) | f ∈ FE}
F(E∗) = {s(E∗)}

The function Compile(−) we just defined above translates (compiles)
any regular expression E into a NFA that recognizes the language L(E).

Lets see how it works in a concrete example. Let

E , (a+ b)(ab+ cd)∗

be a regular expression over the alphabet Σ = {a, b, c, d}. We illustrate the
various automata in graphical form, by applying the function Compile(−)
presented above to the expression E.

It is clear that in order to compute Compile(−) for a complex expres-
sion we need to compute it for subexpressions. For example, to compute
Compile(E) we need to compute Compile(a + b) and Compile((ab + cd)∗),
and so on. So we start from most elementary subexpressions and compose
the result, bottom up.

We first compute the NFA for a. It gives

47



1 2

a

Then the NFA for b

1 2

b

Then the NFA for a+ b

()

()

a

b

Then the NFA for ab

a b

Then the NFA for cd

c d

Then the NFA for ab+ cd

()

()

a b

c d

Now the NFA for (ab+ cd)∗

48



()
()

()

a b

c d

()

()

Finally, we get the whole NFA for the regular expression (a+ b)(ab+ cd)∗

()
()

()

a b

c d

()

()

()

()

()

()

a

d

2.9 Compiling a NFA to an equivalent DFA

We promised in a previous section to show how given any non-deterministic
finite automaton one can construct a deterministic finite automaton that
recognizes exactly the same language.

At first sight, this may be really surprising! After all, NFAs seem to have
in general much more degrees of freedom to accept a word, by magically
guessing the right path to follow.

But actually, it is quite intuitive for a informatician / computer scientist
to see why any NFA can be simulated by some DFA. The idea is to let the
DFA simulate all alternative computations simultaneously, as if they were
done in parallel (think, e.g., of a multiprocessor).

To grasp the general idea, it is easier to look to a concrete example.
Consider then the following NFA over the alphabet Σ = {0, 1}, depicted in
the figure below.

49



S1

S2

S3

S4S5

1

0

1

0

0

1

0

0

Now, let us think on how the NFA BOB works to accept some word w.
Now assume that BOB is in its initial state, and starts a computation

with the word w = 100.
Thus, the first symbol of w is 1. To what states may BOB transit ?
Looking to the possible transitions we see that BOB may transit to either

s2 or to s3, non-deterministically, in one step. In fact, it may also transit
to s4, since it can silently move from s3 to s4 without consuming any other
input symbol, due to the () labeled transition. Now, rather than picking a
determined choice for BOB’s step, let us just record the simple fact that after
having consumed the symbol 1 the NFA BOB must have reached some state
in the set {s2, s3, s4} and continue from then on.

The second symbol to process is 0. To what states may BOB transit,
given that it must be in some of the states {s2, s3, s4} ?

Well, we see that if the given current possible state is s2, there will be no
possible next move, since BOB does not get out of s2 by consuming 0. And
likewise for s3, since there is also no possible 0 move out of s3.

On the other hand, if the given current possible state is s4, we see that
BOB may move to s3 by consuming 0.

We conclude that from the information that BOB is in one of the states
in {s2, s3, s4}, after consuming 0, the only possible next state is s3. In other
words, from the set of states {s2, s3, s4}, after consuming 0 , the only possible
set of next states in {s3}.

Now, the next symbol of w is 0. Since there is no possible move out of s3
consuming 0, we conclude that w = 110 is not accepted by BOB.

Notice that we have explored all possible non-deterministic moves of BOB
when processing the word 100, by keeping track of all accessible states in
“parallel”, as follows:

First, we have the configuration

|100, {s1}

50



After consuming 1, BOB may get to any of the states

1|00, {s2, s3, s4}

After consuming 0, BOB may get to any of the states

10|0, {s3}

Now, BOB gets stuck since there is no 0 move out of s3.
If you think about the way we have reasoned about BOB’s possible moves,

you may have noticed that we have reduced various non-deterministic com-
putations to a single deterministic computation, expressed in terms of sets
of accessible states, rather than in terms of isolated accessible states.

By thinking about the sets of accessible states rather than in terms of
simple accessible states is the key insight for constructing a DFA equivalent
to a given NFA. Each state of the constructed DFA will somehow represent
sets of states of the given NFA.

We illustrate the technique with BOB, and construct an equivalent DFA,
to which we call say dBOB.

First, the initial state of dBOB. This set must represent the set of BOB
states that are accessible from the initial state of BIB without consuming
any input symbol.

We may then set R1 = {s1}. In this case, the state R1 only contains the
initial state of BOB, since BOB does not contain any ()-labeled transitions
from s1.

Now, lets find the right transitions from R1. We have already seen that
consuming 1 we will get us to any of the states {s2, s3, s4}. We may then set
R2 = {s2, s3, s4} and δdBOB(R1, 1) = R2.

Now, exploring a possible 0-move from R1, will lead us to R3 = {s5}:
there is no other possibility. We can then set δdBOB(R1, 0) = R3.

We now continue exploring the possible transitions, from R2 and R3.
FromR2 by a 0-move we go toR4 = {s3}, as seen above. So δdBOB(R2, 0) =

R3

We now analyse the possible transitions from R2 = {s2, s3, s4} by a 1-
move. We see that there are no 1-labeled moves from any one of s3, s3 and
s4. So the set of 1 accessible states from {s2, s3, s4} is the empty set ∅. We
may then leave δdBOB(R2, 1) undefined, as there is no valid transition in this
case.

Let us now consider possible transitions from R3 = {s5}.
For a 0-labeled move, we see that we get to R5 = {s3, s4}, and we set

δdBOB(R3, 0) = R5.

51



For a 1-labeled move, we see that we get to R6 = {s2, s4}, and we set
δdBOB(R3, 1) = R6.

We continue exploring the possible transitions, from R5 and R6.
From R5 = {s3, s4}, by a 0-labeled move we get to {s3} = R4, so

δdBOB(R5, 0) = R4.
From R5 = {s3, s4}, there are no possible 1-labeled moves.
From R6 = {s2, s4}, by a 0-labeled move we get to {s3} = R4, so

δdBOB(R6, 0) = R4.
From R6 = {s2, s4}, again there is no possible 1-labeled move.
We have explored all possible transitions from reachable states, so we get

to the following DFA, to which we have called dBOB.

{S1}

{S2, S3, S4}

R2

{}

R4

{S5}

R3 {S3, S4}

R5

{S2, S4}

R6

1

0

0

0

1

1

0

Notice that the final states of dBOB are obviously the states that contain
some final state of BOB, because when any one of such states are reached,
that means that BOB could have reached a final state.

In the discussion above, we have illustrated the construction process of
a DFA equivalent to a given NFA, in the sense that it recognizes the same
language. This process is called the “Rabin-Scott powerset construction” (for
finite automata), due to their developers, the famous computer scientists
Michael Rabin and Dana Scott, who have introduced the main results on
finite automata theory in a paper published in 1959.

We summarize now the construction in detail:
Assume given a NFA A = 〈SA,ΣA, sA,∆A, FA〉.
Define a DFA D = 〈SA,ΣD, sD, δD, FD〉 as follows:

• SD = ℘(SA). So, the set of states of D is the set of all subsets of states
of A (hence the name “powerset construction”). In practice we do not
need to consider all the elements of ℘(SA), but only the ones reachable
from the initial state, as we have illustrated in the example above.

52



• ΣD = ΣA.

• sD = closeempty({sA}).
Here we have introduce the notion of empty-closure of a set of states
P , noted by closeempty(P ). Given a set of states P ⊆ SA, we define
its empty-closure as the set of all states that can be reached from some
state in P just by following ()-moves.

closeempty(P ) = {s ∈ SA | ∃p.p ∈ P ∧ stepA(p, (), s)}

Recall that stepA is the multi-step transition relation associated to the
NFA A, as defined in the previous section on NFAs.

So the initial state sD represents the set of all states of A which are
accessible from the initial state sA of A without consuming any symbol.

• δD = {(s, a) 7→ s′ ∈ SD × ΣD × SD | s′ = closeempty(move({s}, a))}
where move ∈ SD × ΣD → ΣD is the function defined by

move(P, a) = {s ∈ SA | ∃p.p ∈ P ∧ (p, a, s) ∈ ∆A}

Intuitively, move(P, a) gives the set of all states of A which are acces-
sible from some state in P by following some a-move.

So, δD(P, a) gives the set of states accessible from some state in P by
following a-moves, and then closing under ()-moves. For example, as
we have seen in the example BOB above

δ({s1}, 1) = {s2, s3, s4}

because
move({s1}, 1) = {s2, s3}

and
closeempty({s2, s3}) = {s2, s3, s4}

• FD = {s ∈ SD | s ∩ F 6= ∅}, the set of all states of D that contain at
least one final state of A.

And that is it!
It can be proved that D recognizes exactly the same language as A rec-

ognizes. We will not do that now, although the proof is simple, we just have
to show that A and D can simulate each other in every input word.

Notice that the powerset construction gives (in the worst case) an expo-
nential blow up of the number of states when going from a non-deterministic
a from deterministic automaton (as #SD = 2#SA).

53



So there is this tension: one the one hand we can express a language
very compactly with a NFA (which is essentially of the same size as the
corresponding regular expression). But NFAs and regular expressions are
not so easy to implement, while DFAs are! On the other hand DFAs are
potentially much larger in terms of memory usage.

As usual, there is no free lunch !

2.10 Expressing a DFA by a Regular Expression

We have seen that every language specified by a regular expression can be
implemented by a DFA. What about the other way around? Can every
language implementable by a DFA be expressed by a regular expression?
Or there are some finite automata that accept languages that escape the
expressive power of regular expressions ?

In this section we will see that regular expressions are indeed powerful
enough to specify all the languages recognized by DFAs. We thus find here
a perfect match between specifications and implementations, a very conve-
nient scenario, desirable for a good relationship between specifications and
programming languages.

[ to be concluded, please consult the course text book ]

54



3 Turing Machines and Universality

[ Missing discussion; to be done ]

3.1 Structure of a Stack Based Turing Machine

3.1.1 Data

We first describe the data manipulated by a SBTM. Essentially data ele-
ments are binary trees, whose leaves are atomic data elements, that we may
think of as symbols of a given alphabet Σ. We assume that Σ contains the
special symbol null than stands for the empty tree. The set DATA is defined
inductively as follows:

a ∈ Σ =⇒ a ∈ DATA
t1 ∈ DATA; t2 ∈ DATA =⇒ (t1, t2) ∈ DATA

A pair (t1, t2) represents a tree where t1 is the left subtree and t2 is the right
subtree. As an example of a tree the one in the figure

mary

bob

alice joe

which is represented as (mary, ((alice, joe), bob)) ∈ DATA.
We also use trees to represent lists of data elements. For example, the

list [t1, t2, t3] is represented by the three (t1, (t2, (t3, null))). This is similar
to the encoding of sequences as ordered pairs we have already seen before in
the course.

3.1.2 Components of the Machine

The components of the machine are the following ones

• The Stack

This is a simple, plain, regular stack of DATA elements, there is no
special thing to say about it. The stack is manipulated by special
machine instructions, in a way that will be made precise below.

When a machine starts operation, the stack is assumed to be empty.

55



• The Memory

The machine is equipped with a potentially infinite random access
memory, where memory locations are names M1,M2,M3, . . .. Each
memory cell can hold a data element (e.g. some value v ∈ DATA).

Memory cells are read and written by special machine instructions, in
a way that will be made precise below.

When a machine starts operation, all memory cells are assumed to
contain the value null. We represent such a cleared memory by Mnull.

• The Program Counter

The program counter is a special register that holds the control state
in which the machine is in, at each moment during a computation. The
machine works by following a state transition relation (or program), as
we have previously seen with DFAs and stack machines, going through
various states q ∈ S. When a machine starts operation, the program
counter holds the initial control state s.

• The control transition function

The transition function specifies the behavior of the machine. It is
based on S, a finite set of states. As usual we assume a distinguished
initial state s ∈ S and a set F ⊆ S of final states.

The transition function has type τ ∈ S × OP → S. Given a state s,
a machine configuration, and an operation op ∈ OP , it specifies next
state s′, after the operation is performed on the configuration.

Thus, τ is a set of triples (q, OP, q′) ∈ S ×OP × S.

The possible operations are:

– push t

push the data value t on the top of the stack

– left

if the value on the top of the stack is a non-empty tree, replace
such value by the tree’s left branch.

– right

if the value on the top of the stack is a non-empty tree, replace
such value by the tree’s right branch.

– cons

pops two values from the top of the stack, first t1 and then t2, and
finally pushes the tree (t1, t2).

56



– eq

pops two values from the top of the stack, t1 and t2, and then
pushes true if the values are equal, and false otherwise.

– ?a

executes if the value on the top of the stack is a, otherwise the
operation is not applicable (and so the transition will not take
place).

– ?cons

executes if the value on the top of the stack is a non-empty tree,
otherwise the operation is not applicable (and so the transition
will not take place).

– load k

pushes the content of memory cell Mk on the top of the stack.

– store k

pops the value on the top of the stack and stores it on memory
cell Mk.

A machine configuration is represented by a triple

(M, s, q)

where M is the memory, s is the stack, and q is the program counter.

We denote by M [k] the contents of the memory cell Mk.

We also write M [k/v] to represent the memory that coincides with M
in all memory cells except in Mk, that contains v.

The possible transitions of the SBTM are then the following ones. We
represent the stack as a list, with the topmost element as first element.
We write

(M, s, q) −→ (M ′, s′, q′)

to say that the machine in a configuration with control state q, stack s
and memory M transitions to a new configuration where the memory
is now M ′, the stack becomes s, and the state in the PC is q′. We use

57



q, q′ ∈ S for denoting control states, a, b ∈ Σ, and t, l, r, u ∈ DATA.

(M, s, q) −→ (M, (t, s), q′) if (q, push t, q′) ∈ τ

(M, ((l, r), s), q) −→ (M, (l, s), q′) if (q, left, q′) ∈ τ

(M, ((l, r), s), q) −→ (M, (r, s), q′) if (q, right, q′) ∈ τ

(M, (l, (r, s)), q) −→ (M, ((l, r), s), q′) if (q, cons, q′) ∈ τ

(M, (t, (u, s)), q) −→ (M, (true, s), q′) if (q, eq, q′) ∈ τ and t = u

(M, (t, (u, s)), q) −→ (M, (false, s), q′) if (q, eq, q′) ∈ τ and t 6= u

(M, (a, s), q) −→ (M, (a, s), q′) if (q, ?a, q′) ∈ τ

(M, ((a, b), s), q) −→ (M, ((a, b), s), q′) if (q, ?cons, q′) ∈ τ

(M, s, q) −→ (M, (M [k], s), q′) if (q, load k, q′) ∈ τ

(M, (u, s), q) −→ (M [k/u], s, q′) if (q, store k, q′) ∈ τ

A computation of the SBTM is a finite sequence of transitions

(Minitial, ∅, s)
∗−→ (Mfinal, s, q)

such that q ∈ F is a final control state. Minitial is the initial state of the
memory. Mfinal is the final state of the memory. Initially, the stack is
empty (∅) but the end it may contain some information. That depends
on the “programmer” intentions.

3.2 Example of a SBTM program

As a first example of a SBTM program, we consider a procedure to
reverse a list of symbols.

The idea is to insert the input to the program in memory position X2

and get the output on X1. If we give as input to the program the list
[X, Y ], we expect it to compute the list [Y,X], if we give it as input
the list [l, u, c, y], we expect it to compute the list [y, c, u, l], etc.

In this case, the code will leave X2 set to null at the end, but of course
it would be easy to change the code to avoid that.

58



We list the program by defining the transition relation τ , in a way that
it looks similar to an assembly language program. Each line is of the
form

state label , instruction, next state

The program now follows (you may also find an almost identical one in
the green board above):

start load 2 ch
ch ?null end
ch ?cons s1
s1 store 2 s2
s2 load 1 s3
s3 load 2 s4
s4 left s5
s5 cons s6
s6 store 1 s7
s7 load 2 s8
s8 right

s9 store 2 start

The initial state is start , and the only final state is end .

The program works by assuming that X1 is initially null. At each
step of the cycle starting at control state start, the machine removes
the first element in the list stored in X2 and adds it at the head of the
list stored at X1, when the list stored in X2 becomes empty (contains
null), the procedure stops.

If we want, we may list the program in more succinct form, by eliding
the names of the states that just follow on a consecutive sequence. This
way, the program looks pretty similar to an assembly language program

59



for a modern processor.

start load 2 ch
ch ?null end
ch ?cons s1
s1 store 2

load 1

load 2

left

cons

store 1

load 2

right

store 2 start

We illustrate how the programs works on a simple example, but pre-
cisely listing the transitions between configurations using the transition
rules defined above. We give as input to the program the list [X, Y ]
and expect it to compute [Y,X].

The program just uses two memory cells M1 and M2, so we will repre-
sent the memory state as 〈v1〉 〈v2〉 where v1 is the content of memory
cell M1 and v2 is the content of memory cell M2.

We consider then the initial memory 〈null〉 〈[X, Y ]〉, meaning the M [1]
contains null (M [1] = null) and M [2] contains the list [X, Y ] (M [2] =
[X, Y ]).

Remember that a list such as [X, Y ] actually is a tree (X, (Y, null)),
lists are just a special case of trees, for which we have this special
notation.

We thus consider the initial configuration for our SBTM

(〈null〉 〈[X, Y ]〉 , null, start)

We start off with the empty stack (null) and in the initial control state
(start), and now, start running the program, applying an appropriate
transition at each step. To make it readable, we annotate each transi-
tion with the operation executed (according to the transition relation
τ - the program). Here we go.

60



(〈null〉 〈[X, Y ]〉 , null, start)
load 2→

(〈null〉 〈[X, Y ]〉 , [[X, Y ]], ch)
?cons→

(〈null〉 〈[X, Y ]〉 , [[X, Y ]], s1 )
store 2→

(〈null〉 〈[X, Y ]〉 , null, s2 )
load 1→

(〈null〉 〈[X, Y ]〉 , [null], s3 )
load 2→

(〈null〉 〈[X, Y ]〉 , [[X, Y ], null], s4 )
left→

(〈null〉 〈[X, Y ]〉 , [X, null], s5 )
cons→

(〈null〉 〈[X, Y ]〉 , [[X]], s6 )
store 1→

(〈[X]〉 〈[X, Y ]〉 , null, s7 )
load 2→

(〈[X]〉 〈[X, Y ]〉 , [[X, Y ]], s8 )
right→

(〈[X]〉 〈[X, Y ]〉 , [[Y ]], s8 )
store 2→

(〈[X]〉 〈[Y ]〉 , null, start)
load 2→

(〈[X]〉 〈[Y ]〉 , [[Y ]], ch)
?cons→

(〈[X]〉 〈[Y ]〉 , [[Y ]], s1 )
store 2→

(〈]〉 〈[Y ]〉 , null, s2 )
load 1→

(〈[X]〉 〈[Y ]〉 , [[X]], s3 )
load 2→

(〈[X]〉 〈[Y ]〉 , [[Y ], [X]], s4 )
left→

(〈[X]〉 〈[Y ]〉 , [Y, [X]], s5 )
cons→

(〈[X]〉 〈[Y ]〉 , [[Y,X]], s6 )
store 1→

(〈[Y,X]〉 〈[Y ]〉 , null, s7 )
load 2→

(〈[Y,X]〉 〈[Y ]〉 , [[Y ]], s8 )
right→

(〈[Y,X]〉 〈[Y ]〉 , [null], s9 )
store 2→

(〈[Y,X]〉 〈null〉 , null, start)
load 2→

(〈[Y,X]〉 〈null〉 , [null], start)
?null→

(〈[Y,X]〉 〈null〉 , [null], end)

The computation have thus reached a final configuration, since we as-
sumed end to be a final control state. The result of reversing the list
initially given at M2 is not computed and delivered at M1. Please read
each step in the computation above carefully, and make sure you un-
derstand what is going on. It should be clear that the program works
for lists of any length.

Before concluding the section we summarize the definition of what is a
SBTM. Formally, a Stack Based Turing Machine T is a structure

T = 〈S,Σ, s,M, τ, F 〉

61



where

1. S is the finite set of control states of T

2. Σ is the finite set of actions (or symbols) of T .

Based on Σ we define the set DATA of values manipulable by the
machine, as shown before.

3. s is distinguished state in S, the initial state of T

4. M is the initial memory configuration.

5. τ is the transition relation of T , that given a current state in S
and a machine operation indicates the next state in S to which
the machine should transition after performing the operation (if
the operation is possible). So we have τ ∈ S ×OP × S.

The relation τ is deterministic in the sense that τ must satisfy the
following condition:

(s, op1, s
′) ∈ τ and (s, op2, s

′′) ∈ τ then op1 = ?α and op2 = ?β
and α 6= β.

This means that “non-deterministic transitions” must be labeled
(different) by top of stack query operations, so that the actual
value on the top of stack will be used to pick the unique appro-
priate alternative.

6. F is a subset of S, the set F of final states of T .

7. The set of operations OP is given by

OP = {push t, left, right, cons, eq, ?t, ?cons, load k, store k}

where t is any value t ∈ DATA, and k any natural number k ∈ NAT .

62



3.3 Universality

3.3.1 Programs as Data

We may represent the transition relation of any SBTM as data, as follows.
A natural number k is represented by a list of length k built only with the
symbol 1. Each element of the transition relation is represented by a four
element list:

TRANS STEP = [state1, opcode, arg , state2]

For example, the triple
(s3 , load 2, s4 )

will be encoded as
[s3 , load , [1, 1], s4 ]

We will need to consider an alphabet Σ containing, besides all the symbols of
the given SBTM, special symbols to represent all the control states, all the
operation codes, the symbol 1, etc. A whole program will then be represented
by the list of all triples, in some arbitrary order.

Program = [trans step1, trans step2, trans step2, trans step3, . . .]

The memory state is also represented as a list of values, where the kth element
represents the memory location Mk. For every program to be simulated,
the number of used memory locations is always finite, so we may initially
construct the memory list with the length we wish.

3.3.2 Universal Program

The program for the universal SBTB will make special use of the following
reserved memory locations

• MPC, containing the value of the program counter (a control state, rep-
resented by the corresponding symbol)

• MSTACK, containing the data representation of the stack.

• MCODE, containing the data representation of the program to be simu-
lated.

• MCODEL, containing the search list for the next instruction.

• MTRIPLE, containing the current triple under execution.

63



• MOP, containing the current operation under execution.

• MMEM, containing the current simulated memory.

• MFINALS, containing the list of final states.

• Other temporary locations, local to subsidiary operations and not so
important as the main locations above are discussed below.

The initial state of the the universal program is pre fetch, the sole final state
is halt . The machine is initialized with the initial state of the program to be
simulated in the MPC register. The following code implements the “fetch”
part of each machine cycle. It inspects the current state, and checks if it
belongs to the set of final states. If that is the case, the simulator halts,
otherwise proceeds to decode the instruction and jump to the appropriate

64



implementation.

pre fetch load FINALS

other store TMP FINALS chk1
load TMP FINALS chk1

chk1 ?null
sel store D fetch
chk1 ?cons

left

load PC

eq at end?
at end? ?true halt
at end? ?false

store D

load TMP FINALS

right other

fetch load CODE

retry store CODEL

load CODEL sel
sel ?null ERROR
sel ?cons go
go left

left

load PC

eq cmp
cmp ?false

load CODEL

right retry
cmp ?true

load CODEL

left

store TRIPLE dispatch

The next snippet is executed after each instruction simulator terminates,
initializes MPC with the next state as defined in the current triple, and loops

65



again to the initial state pre fetch.

next load TRIPLE

right

right

right

left

store PC pre fetch

66



This is the dispatch code, it picks the current triple, gets the operation
code out of it, and branches to the appropriate operation implementation.

dispatch load TRIPLE

right

left

store OP

load OP

push push
eq

s1 ?true is push op
is push op storeD push impl
s1 ?false

store D

load OP

push right
eq s2

s2 ?true is right op
is right op store D right impl
s2 ?false

store D

load OP

push left
eq s3

s3 ?true is left op
is left op store D left impl
s3 ?false

store D

load OP

push cons
eq s4

s4 ?true is cons op
is cons op store D cons impl
s4 ?false

store D

load OP

push load
eq s5

s5 ?true is load op
is load op store D load impl
s5 ?false
. . . identical for the remaining operation codes

67



We now present the implementation of the various instructions.

push impl load STACK

load TRIPLE

right

right

left

cons

store STACK next

right impl load STACK

right

load STACK

left

right

cons

store STACK next

left impl load STACK

right

load STACK

left

left

cons

store STACK next

cons impl load STACK

right

right

load STACK

right

left

load STACK

left

cons

cons

store STACK next

68



eq impl load STACK

right

right

load STACK

right

left

load STACK

left

eq

cons

store STACK next

a? impl load STACK

left

load OP

right

right

left

eq tst
tst ?true

store D next
tst ?false

store D retry

cons? impl load STACK

left s1
s1 ?cons

store D next
push null

s1 ?null
store D retry

69



load impl load OP

right

right

left

store MEM POS

load STACK

load MEM

next pos store TMP MEM

load MEM POS chm
chm ?null

store D

load TMP MEM

left

cons

store STACK NEXT
chm ?cons

right

store MEM POS

load MEM TMP

right next pos

store impl load OP

. . . left as exercise :-)

70


