Matemática Discreta 2013/14

1.2. Relações Binárias

Isabel Oitavem Departamento de Matemática FCT/UNL

Esta apresentação é um extrato dos slides elaborados por Vítor Hugo Fernandes, em colaboração com Jorge André, para esta disciplina no ano letivo 2010/2011.

Departamento de Matemática (FCT/UNL)

Matemática Discreta

1 / 17

Definição

Seja X um conjunto. Chamamos relação binária sobre X a todo o subconjunto de $X \times X$.

Mais geralmente, uma relação n-ária $(n \in \mathbb{N})$ sobre X é um subconjunto de X^n .

Exemplos

- ① Seja $X = \{1, 2, 3\}$. O conjunto $R = \{(1, 1), (2, 3), (3, 2)\}$ é uma relação binária sobre X.
- 2 Sejam $X = \{1, 2, 3, 4\}$. O conjunto $R = \{(x, y) \in X^2 \mid x + y \le 5\}$ é uma relação binária sobre X.

Notação

Sejam X um conjunto e R uma relação binária sobre X. Dado um par $(x,y) \in X \times X$, escrevemos também xRy para designar que $(x,y) \in R$.

Definição

Sejam X e Y dois conjuntos. Uma relação de X em Y é um subconjunto de $X \times Y$. (No caso particular em que X = Y temos uma relação binária sobre X.)

Seja R uma relação de X em Y. Chamamos domínio de R ao conjunto

$$dom R = \{x \in X \mid (\exists y \in Y) \ (x, y) \in R\},\$$

e imagem de R ao conjunto

$$\operatorname{im} R = \{ y \in Y \mid (\exists x \in X) (x, y) \in R \}.$$

A relação inversa de R é a relação R^{-1} de Y em X definida por

$$R^{-1} = \{ (y, x) \mid (x, y) \in R \}.$$

A relação composta da relação R de X em Y com a relação S de Y em Z é a relação $S \circ R$ de X em Z definida por

$$S \circ R = \{(x, y) \mid (\exists a \in Y) \ (x, a) \in R \in (a, y) \in S\}.$$

1.2. Relações Binárias

Representação de uma relação binária

Seja R uma relação binária sobre um conjunto finito $X = \{x_1, \dots, x_n\}$.

1 Através de uma matriz de adjacências: a matriz de adjacências de R é a matriz $A = [a_{ij}]_{n \times n} \in \mathcal{M}_{n \times n}(\{0,1\})$ definida por:

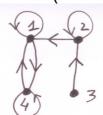
definida por $a_{ij}=\left\{egin{array}{ll} 1 & ext{se} & (x_i,x_j)\in R \ 0 & ext{se} & (x_i,x_j)\notin R \end{array}
ight.$

② Através de um diagrama: os elementos de X são representados por pontos e dois pontos do diagrama que representam x_i e x_j estão unidos por uma seta, com orientação de x_i para x_j, se (x_i, x_j) ∈ R.

Exemplo

Sejam $X = \{1, 2, 3, 4\}$ e $R = \{(1, 1), (1, 4), (2, 1), (2, 2), (3, 2), (4, 1), (4, 4)\}$. A matriz das adjacências de R (considerando $x_i = i$, i = 1, 2, 3, 4) é a matriz

$$\left[\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{array}\right]$$



 \acute{e} um diagrama que representa R.

Definição

Dizemos que uma relação binária R sobre X é:

- reflexiva se $(\forall x \in X) xRx$;
- irreflexiva se $(\forall x \in X) (x, x) \notin R$;
- simétrica se $(\forall x, y \in X) xRy \Rightarrow yRx$;
- anti-simétrica se $(\forall x, y \in X) xRy \land yRx \Rightarrow x = y$;
- transitiva se $(\forall x, y, z \in X) xRy \land yRz \Rightarrow xRz$.

Definição

Uma relação binária reflexiva, simétrica e transitiva diz-se uma relação de equivalência.

Exemplos

• Seja $X = \{1,2,3,4\}$. A relação $R = \{(1,1),(1,2),(4,1),(2,2),(3,3),(1,4),(2,1),(4,4)\}$ não é uma relação de equivalência.

1.2 Relações Binárias

ullet A relação R definida em ${\mathbb R}$ por, para quaisquer $x,y\in R$,

$$xRy \Leftrightarrow x^2 = y^2$$
,

é uma relação de equivalência.

• Em $\mathbb Z$ a relação \sim definida por, para quaisquer $m,n\in\mathbb Z$,

$$m \sim n \Leftrightarrow |m| = |n|,$$

é uma relação de equivalência

- Sejam X um conjunto e $\Delta = \{(x,x) \mid x \in X\}$. Então Δ é uma relação de equivalência sobre X (denominada relação identidade sobre X).
- Sejam X um conjunto e $\Omega = \{(x,y) \mid x,y \in X\}$. Então Ω é uma relação de equivalência sobre X (denominada relação universal sobre X).
- Para cada $x \in \mathbb{R}$, denotemos por $\lfloor x \rfloor$ o maior número inteiro y tal que $y \leq x$ (parte inteira de x). A relação \sim definida em \mathbb{R} por, para quaisquer $x, y \in \mathbb{R}$,

$$x \sim y \Leftrightarrow |x| = |y|,$$

é uma relação de equivalência.