
1	

Fundamentos de Sistemas de Operação
MIEI 2018/2019

Laboratory session 3

Objectives
Command	 interpreter	 (shell)	 with	 external	 commands	 (execve	 system	 call),	 IO	 redirection,	 background	
execution	and	signal	handling.		

Execution of External Commands
Complete	the	function	runcommand(char *argv[]) that	receives	as	argument	a	vector	of	strings	defining	
one	command	and	its	arguments,	to	execute	this	command	in	a	new	child	process.	For	this,	you	must	use	the	
execve	 system	call,	or	another	related	 function	 like	execvp,	to	execute	 the	new	program	in	 the	child	process.	
When	using	execvp,	the	command	specified	in	argv[0]	can	be	any	executable	file	accessible	from	a	directory	in	
the	environment	variable	PATH	(note:	to	show	the	current	value	of	this	environment	variable	in	a	terminal,	run	
the	 command	 "echo $PATH").	 For	now,	 the	 implementation	 of	 runcommand	 continues	 to	wait	 for	 its	 child	
process	to	terminate,	by	using	the	wait	system	call,	before	returning	to	the	Shell's	main	execution	cycle.	

Executing commands on the background
The	Unix	shell	allows	users	 to	run	commands	on	 the	background,	 that	 is,	 run	commands	without	having	 the	
shell	waiting	for	their	conclusion	before	presenting	the	prompt.	To	trigger	such	behavior	the	user	simply	has	to	
terminate	the	command	line	with	character	‘&’,	as	in	the	following	example:	
	

> gedit &
Process 12345 is executing in the background.

>
	
In	 such	 case,	gedit	 executes	 in	 background,	while	 the	 shell	 becomes	 immediately	 ready	 to	 execute	 a	 new	
command.	This	is	achieved	by	having	the	shell	process,	after	using	fork	to	launch	the	new	process	p,	not	wait	
for	p’s	conclusion	but	instead	proceed	to	printing	the	prompt	and	read	the	user’s	next	command.	 	Implement	
this	functionality	in	your	shell	and,	in	order	to	inform	the	user	of	this	behavior,	print	a	message	with	format	
“Process pid_of_child_process is executing in the background” as	 depicted	 in	 the	
previous	example.	
	
Please	 note	 that,	 if	 no	 extra	 action	 is	 performed	 by	 the	 shell	 (the	 father	 process)	 when	 the	 child	 process	
terminates,	 the	 latter	 is	kept	 in	a	zombie	 status	by	 the	system.	To	avoid	 this,	 i.e.	 to	clear	any	 trace	of	a	child	
process,	its	father	process	(in	this	case	the	shell)	has	to	invoke	the	wait	or	waitpid	system	calls	later	so	that	it	
receives	 its	child's	exit	status.	At	this	point	you	should	print	a	message	acknowledging	 the	conclusion	of	 the	
command	and	its	termination	status.	An	example	of	such	a	message	is:		
	
	 Process 12345 has concluded its execution with status 0	
	
The	command	ps	can	be	used	to	inspect	the	current	processes	in	the	system,	including	the	"zombie"	processes,	
e.g.	by	doing	ps aux.	
	
Sequence of Commands

Extend	your	shell	so	that	it	supports	a	sequence	of	two	commands	in	the	same	command	line,	which	is	specified	
by	 the	 character	 ';'	 acting	 as	 a	 command	 separator/sequencer.	 This	 means	 the	 shell	 has	 to	 wait	 for	 the	
execution	of	the	first	command	to	terminate	before	executing	the	second	command.	Only	then,	the	shell	returns	
to	its	main	execution	cycle.	For	instance,	considering	the	following	command	line,	
	
							> gcc -Wall -O -c mycalc.c ; gcc -o mycalc mycalc.o -lm	
	

2	

the	shell	first	compiles	the	C	file	"mycalc.c"	generating	an	object	file.	Only	when	this	compilation	ends,	the	shell	
launches	the	linkage	of	the	resulting	object	file	with	the	math	library.	
	
From	the	code	above,	the	array	of	strings	av	now	defines	two	commands	and	its	arguments	separated	by	a	
string	containing	 the	separator	character,	 i.e.	 ";".	Your	 implementation	has	to	parse	 the	array	looking	 for	 the	
string	";"	in	order	 to	 first	identify	the	words	composing	the	 first	command,	execute	 it	 in	a	process	child,	and	
wait	for	its	termination.	Subsequently,	the	code	launches	the	execution	of	the	second	command	and	waits	for	its	
termination,	before	returning	to	the	Shell's	main	execution	cycle.	
	

Bringing Commands Back to the Foreground

Implement	the	fg	 internal	command	that	brings	to	the	foreground	that	last	command	issued	for	background	
execution.	This	means	that	the	shell	now	waits	for	the	conclusion	of	such	process.		

Extend	 this	 functionality	 to	 bring	 back	 any	 command	 issued	 for	 background	 execution.	 To	 that	 end,	 the	 fg	
command	may	now	receive	an	optional	pid	argument.	If	no	pid	 is	given,	the	shell	waits	for	the	last	command	
issued	for	background	execution	as	before,	otherwise	it	waits	for	the	conclusion	of	the	process	with	the	given	
pid.	For	instance,	in	the	following	example	

	 > fg 12345	

the	shell	waits	for	the	conclusion	of	process	12345,	if	such	process	exists.	If	not,	it	emits	an	error	message.	

	

Bibliography
Look	at	examples	from	classes	8	and	9.	
Check	section	5.4	from	OSTEP	book	(ostep.org)	
Read	reference	manuals	(man)	for	execvp, wait, fg, bash.	

	

