
	 1	

Fundamentos de Sistemas de Operação

MIEI 2018/2019

Laboratorial Session 1

Objectives
Remember	C	programming.	Obtain	a	program’s	execution	time	and	estimate	a	system	call	overhead.	Exercise	and	
compare	 Input/Output	 (I/O)	programming	at	different	 levels:	 systems	 calls	 in	UNIX/Linux	 systems,	 standard	 C	
library	and	Java.		

Introduction
Programming	languages	typically	offer	in	their	runtime	libraries	a	more	or	less	comprehensive	set	of	commonly	
used	abstractions	and	operations.	Some	of	these	operations	are	based	on	(i.e.	use)	services	offered	by	the	underlying	
operating	system	in	the	form	of	system	calls.	Such	library	functions	aim	to	enhance	programming	by	hiding	some	
low-level	details	of	system	calls,	also	improving	portability.	Those	functions	can	introduce	some	overheads	but	try	
to	improve	a	program’s	performance	for	the	common	cases.	It	is	up	to	the	programmer	to	either	use	the	system	calls	
directly	or	to	resort	to	the	available	runtime	libraries.	For	instance,	the	C	language	standard	offers	the	type	FILE	that	
can	be	created	to	access	a	file	by	using	the	operation	fopen,	and	it	is	destroyed	with	fclose.	In	Java	several	classes	are	
offered,	like	FileInputStream	and	FileOutputStream.		

Subsequently	to	a	fopen,	the	operations	fwrite	and	fread	allow	writing	and	reading	raw	blocks	of	bytes	to/from	a	file.	
In	turn,	the	operations	printf	and	fprintf	are	used	to	print	text	and	perform	any	necessary	conversions,	e.g.	when	
printing	numerical	data	types	(int,	float,	etc)	to	text	files,	whereas	fgets	and	fscanf	are	used	to	read	formatted	text.	
In	Java,	after	creating	a	stream	object	to	access	a	file,	the	methods	read	and	write	can	be	used	to	read	or	write	blocks	
of	bytes.	From	those	objects,	PrintStream,	 InputStream	and	 Scanner	objects	can	be	created	allowing	reading	and	
writing	of	typed	data	types	from/to	text	files	with	the	necessary	conversions.	

The	above	I/O	libraries	and	classes	offer	several	operations	with	different	functionalities	and	data	processing	and	
conversion	but	must	request	the	operating	system	for	the	real	access	to	the	computer	files	and	devices.	Namely,	
those	runtime	libraries	use	an	interface	with	the	operating	system	—	i.e.	make	calls	to	the	system's	kernel	via	the	
system	calls	interface	functions	offered	in	libc.	The	system	calls	for	file	I/O,	namely,	open,	close,	write	and	read,	only	
allow	unformatted/raw	data	writes	and	reads.	The	abstraction	offered	to	the	programmer	is	of	a	"channel	to	a	file"	
that	is	created	with	the	open	system	call	and	destroyed/freed	by	close.		

The	C	library	functions	fwrite,	fread,	fprintf,	fgets,	fscanf,	etc,	and	Java	methods	read,	write,	println,	nextLine,	nextInt,	
nextFloat,	etc.	use	the	write	and	read	system	calls	to	write	and	read	the	needed	data.	Moreover,	they	may	also	use	
internal	buffers	in	order	to	e.g.	read	extra	data	that	is	available	for	use	in	a	faster	way.		

Estimation of a System Call Overhead
A	system	call	usually	takes	more	time	to	execute	than	a	regular	function	call.	The	execution	time	of	each	system	call	
depends	on	the	actions	the	kernel	must	complete	internally	before	returning	a	reply	to	the	calling	process.	
Start	by	measuring	the	average	time	it	takes	to	call	a	regular	function	by	using	the	following	program	(timing.c).	
For	precision	we	must	measure	the	time	to	execute	several	function	calls	and	then	calculate	their	average	value.	
#include <sys/time.h>
#include <stdio.h>
#define NTRIES 1000

int do_something(void) { return 1; }

int main (int argc, char *argv[]) {
 int i, p;
 long elapsed;
 struct timeval t1,t2;

 gettimeofday(&t1, NULL);
 for (i = 0; i < NTRIES; i++)
 p = do_something(); // code to evaluate
 gettimeofday(&t2, NULL);

	 2	

 elapsed = ((long)t2.tv_sec - t1.tv_sec) * 1000000L + (t2.tv_usec - t1.tv_usec);
 printf ("Elapsed time = %6li us (%g us/call)\n", elapsed, (double)elapsed/NTRIES);
 return 0;
}

Afterwards,	evaluate	the	times	for	the	following	cases:	

simple	system	call	–	replace	the	do_something	function	call	in	the	for	loop	in	order	to	measure	one	of	the	simplest	
system	calls,	getuid	(that	returns	the	identifier	of	the	user	that	launched	the	process).		

I/O	operations	–	replace	the	do_something	function	in	the	for	loop	with	the	functions	in	the	following	two	cases,	in	
order	to	evaluate	the	time	it	takes	to	write	some	text	to	the	screen:	

1. printf("writing");
2. printf("writing"); fflush(stdout);

Compare	the	times	and	explain	the	differences.	

Copying a file

I/O programming with Java classes

Look	 at	 the	 Java	 program	 Copia.java.	 It	 will	 copy	 an	 existing	 file,	 similar	 to	 the	 existing	cp	 command.	 The	
command:	
 java Copia 100 FILE1 FILE2

should	create	a	replica	of	file	FILE1	with	name	FILE2,	copying	100	bytes	at	a	time.	To	check	if	the	files	are	indeed	
identical	you	may	use	the	cmp	command	as	follows:	
 cmp FILE1 FILE2	

I/O programming with the C Standard Library

Look	at	the	new	version	of	the	previous	program	using	the	standard	C	functions	for	the	I/O	operations	(fcopia.c),	
namely	fopen,	fread	and	fwrite.	The	command	can	be	used	like:	
 fcopia 100 FILE1 FILE2

to	create	a	replica	of	file	FILE1	with	name	FILE2	(copying	100	bytes	at	a	time).		

I/O programming with System Calls

Look	at	the	other	version	of	the	previous	command	using	just	Unix’s	system	calls	C	interface,	open,	read,	write	
and	close	for	the	I/O	operations:	copia.c.	This	can	be	used	like	the	previous	one.	

Evaluation
Use	the	time	command	to	obtain	the	time	that	each	program	takes	to	copy	a	big	file.	For	that	purpose,	place	the	
time	command	before	your	own.	Example:	
 time fcopia 100 file1 newfile
 real 0m0.175s
 user 0m0.001s
 sys 0m0.009s	

Use	an	existing	file	with	at	least	10Mbytes	(you	can	use	any	one	or	create	a	new	one	for	testing	using	a	command	
like:			dd if=/dev/zero bs=1M count=10 of=file1)	

Execute	your	program	with	different	block	sizes	(1,	128,	1024,	10240).	Also	count	the	number	of	system	calls	using	
strace	command	for	the	fcopia	and	copia	programs:	
strace –c fcopia 100 file1 newfile

Compare	the	performance	of	each	version,	with	each	block	size	and	its	use	of	system	calls.	Justify	the	results	and	
performance	discrepancies.	

	 3	

Bibliography
• Sections	101.1	to	101.5	of	recommended	book’s	“Lab	Tutorial”:	

http://pages.cs.wisc.edu/~remzi/OSTEP/lab-tutorial.pdf	
• On-line	manual	pages	for		

o the	cp	and	dd	commands	
o the	system	call	functions	open,	read,	write	and	close	
o the	functions	of	the	C	library:	fopen,	fread,	fwrite	and	fclose		

You	can	type	the	man	command	on	your	terminal	or	Internet	browser,	for	example:	man cp	

