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TOPICS 

IN VECTOR 

CALCULUS

ou have reached the final chapter in this text, and

in a sense you have come full circle back to the roots of

calculus. The main theme of this chapter is the concept

of a flow, and the body of mathematics that we will study

here is concerned with analyzing flows of various types—

the flow of a fluid or the flow of electricity, for example.

Indeed, the early writings of Isaac Newton on calculus are

replete with such nouns as “fluxion” and “fluent,” which

are rooted in the Latin fluens (to flow). We will begin this

chapter by introducing the concept of a vector field, which

is the mathematical description of a flow. In subsequent

sections, we will introduce two new kinds of integrals

that are used in a variety of applications to analyze prop-

erties of vector fields and flows. Finally, we conclude with

three major theorems, Green’s Theorem, the Divergence

Theorem, and Stokes’ Theorem. These theorems provide

a deep insight into the nature of flows and are the basis

for many of the most important principles in physics and

engineering.
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1094 Topics in Vector Calculus

16.1 VECTOR FIELDS

In this section we will consider functions that associate vectors with points in 2-space

or 3-space. We will see that such functions play an important role in the study of fluid

flow, gravitational force fields, electromagnetic force fields, and a wide range of other

applied problems.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

VECTOR FIELDS
To motivate the mathematical ideas in this section, consider a unit point mass located at

any point in the Universe. According to Newton’s Law of Universal Gravitation, the Earth

exerts an attractive force on the mass that is directed toward the center of the Earth and has

a magnitude that is inversely proportional to the square of the distance from the mass to

the Earth’s center (Figure 16.1.1). This association of force vectors with points in space is

called the Earth’s gravitational field. A similar idea arises in fluid flow. Imagine a stream

in which the water flows horizontally at every level, and consider the layer of water at a

specific depth. At each point of the layer, the water has a certain velocity, which we can

represent by a vector at that point (Figure 16.1.2). This association of velocity vectors with

points in the two-dimensional layer is called the velocity field at that layer. These ideas are

captured in the following definition.

Figure 16.1.1

Figure 16.1.2

16.1.1 DEFINITION. A vector field is a function that associates a unique vector F(P )

with each point P in a region of 2-space or 3-space.

Observe that in this definition there is no reference to a coordinate system. However, for

computational purposes it is usually desirable to introduce a coordinate system so that vec-

tors can be assigned components. Specifically, if F(P ) is a vector field in an xy-coordinate

system, then the point P will have some coordinates (x, y) and the associated vector will

have components that are functions of x and y. Thus, the vector field F(P ) can be expressed

as

F(x, y) = f(x, y)i + g(x, y) j

Similarly, in 3-space with an xyz-coordinate system, a vector field F(P ) can be expressed as

F(x, y, z) = f(x, y, z)i + g(x, y, z) j + h(x, y, z)k

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

GRAPHICAL REPRESENTATIONS OF
VECTOR FIELDS

A vector field in 2-space can be pictured geometrically by drawing representative field vec-

tors F(x, y) at some well-chosen points in the xy-plane. But, just as it is usually not possible

to describe a plane curve completely by plotting finitely many points, so it is usually not pos-

sible to describe a vector field completely by drawing finitely many vectors. Nevertheless,

such graphical representations can provide useful information about the general behavior

of the field if the vectors are chosen appropriately. However, graphical representations of

vector fields require a substantial amount of computation, so they are usually created using

computers. Figure 16.1.3 shows four computer-generated vector fields. The vector field in

part (a) might describe the velocity of the current in a stream at various depths. At the

bottom of the stream the velocity is zero, but the speed of the current increases as the depth

decreases. Points at the same depth have the same speed. The vector field in part (b) might

describe the velocity at points on a rotating wheel. At the center of the wheel the velocity is

zero, but the speed increases with the distance from the center. Points at the same distance

from the center have the same speed. The vector field in part (c) might describe the repulsive

force of an electrical charge—the closer to the charge, the greater the force of repulsion.

Part (d ) shows a vector field in 3-space. Such pictures tend to be cluttered and hence are

of lesser value than graphical representations of vector fields in 2-space. Note also that the

vectors in parts (b) and (c) are not to scale—their lengths have been compressed for clarity.

We will follow this procedure throughout this chapter.
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FOR THE READER. If you have a graphing utility that can generate vector fields, read

the relevant documentation and try to make reasonable duplicates of parts (a) and (b) of

Figure 16.1.3.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

A COMPACT NOTATION FOR
VECTOR FIELDS

Sometimes it is helpful to denote the vector fields F(x, y) and F(x, y, z) entirely in vector

notation by identifying (x, y) with the radius vector r = xi + y j and (x, y, z) with the

radius vector r = xi+y j+ zk. With this notation a vector field in either 2-space or 3-space

can be written as F(r). When no confusion is likely to arise, we will sometimes omit the r

altogether and denote the vector field as F.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INVERSE-SQUARE FIELDS
According to Newton’s Law of Universal Gravitation, objects with massesm andM attract

each other with a force F of magnitude

‖F‖ =
GmM

r2
(1)

where r is the distance between the objects (treated as point masses) andG is a constant. If

we assume that the object of massM is located at the origin of an xyz-coordinate system and

r is the radius vector to the object of mass m, then r = ‖r‖, and the force F(r) exerted by

the object of massM on the object of mass m is in the direction of the unit vector −r/‖r‖.

Thus, from (1)

F(r) = −
GmM

‖r‖2

r

‖r‖
= −

GmM

‖r‖3
r (2)

If m and M are constant, and we let c = −GmM , then this formula can be expressed as

F(r) =
c

‖r‖3
r

Vector fields of this form arise in electromagnetic as well as gravitational problems. Such

fields are so important that they have their own terminology.

16.1.2 DEFINITION. If r is a radius vector in 2-space or 3-space, and if c is a constant,

then a vector field of the form

F(r) =
c

‖r‖3
r (3)

is called an inverse-square field.
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Observe that if c > 0 in (3), then F(r) has the same direction as r, so each vector in the

field is directed away from the origin; and if c < 0, then F(r) is oppositely directed to r, so

each vector in the field is directed toward the origin. In either case the magnitude of F(r)

is inversely proportional to the square of the distance from the terminal point of r to the

origin, since

‖F(r)‖ =
|c|

‖r‖3
‖r‖ =

|c|
‖r‖2

We leave it for you to verify that in 2-space Formula (3) can be written in component form

as

F(x, y) =
c

(x2 + y2)3/2
(xi + y j) (4)

and in 3-space as

F(x, y, z) =
c

(x2 + y2 + z2)3/2
(xi + y j + zk) (5)

[see parts (c) and (d ) of Figure 16.1.3].

Example 1 Coulomb’s law states that the electrostatic force exerted by one charged

particle on another is directly proportional to the product of the charges and inversely

proportional to the square of the distance between them. This has the same form as Newton’s

Law of Universal Gravitation, so the electrostatic force field exerted by a charged particle is

an inverse-square field. Specifically, if a particle of chargeQ is at the origin of a coordinate

system, and if r is the radius vector to a particle of charge q, then the force F(r) that the

particle of charge Q exerts on the particle of charge q is of the form

F(r) =
qQ

4πǫ0‖r‖3
r

where ǫ0 is a positive constant (called the permittivity constant). This formula is of form

(3) with c = qQ/4πǫ0. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

GRADIENT FIELDS
An important class of vector fields arises from the process of finding gradients. Recall that

if φ is a function of three variables, then the gradient of φ is defined as

∇φ =
∂φ

∂x
i +

∂φ

∂y
j +

∂φ

∂z
k

This formula defines a vector field in 3-space called the gradient field of φ. Similarly, the

gradient of a function of two variables defines a gradient field in 2-space. At each point in a

gradient field where the gradient is nonzero, the vector points in the direction in which the

rate of increase of φ is maximum.

Example 2 Sketch the gradient field of φ(x, y) = x + y.

Solution. The gradient of φ is

∇φ =
∂φ

∂x
i +

∂φ

∂y
j = i + j

which is the same at each point. A portion of the vector field is sketched in Figure 16.1.4. ◭
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Figure 16.1.4

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

CONSERVATIVE FIELDS AND
POTENTIAL FUNCTIONS

If F(r) is an arbitrary vector field in 2-space or 3-space, we can ask whether it is the gradient

field of some functionφ, and if so, how we can findφ. This is an important problem in various

applications, and we will study it in more detail later. However, there is some terminology

for such fields that we will introduce now.
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16.1.3 DEFINITION. A vector field F in 2-space or 3-space is said to be conservative

in a region if it is the gradient field for some function φ in that region. The function φ is

called a potential function for F in the region.

Example 3 Inverse-square fields are conservative in any region that does not contain the

origin. For example, in the two-dimensional case the function

φ(x, y) = −
c

(x2 + y2)1/2
(6)

is a potential function for (4) in any region not containing the origin, since

∇φ(x, y) =
∂φ

∂x
i +

∂φ

∂y
j

=
cx

(x2 + y2)3/2
i +

cy

(x2 + y2)3/2
j

=
c

(x2 + y2)3/2
(xi + y j)

= F(x, y)

In a later section we will discuss methods for finding potential functions for conservative

vector fields. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DIVERGENCE AND CURL
We will now define two important operations on vector fields in 3-space—the divergence

and the curl of the field. These names originate in the study of fluid flow, in which case the

divergence relates to the way in which fluid flows toward or away from a point and the curl

relates to the rotational properties of the fluid at a point. We will investigate the physical

interpretations of these operations in more detail later, but for now we will focus only on

their computation.

16.1.4 DEFINITION. If F(x, y, z) = f(x, y, z)i + g(x, y, z) j + h(x, y, z)k, then we

define the divergence of F, written div F, by

div F =
∂f

∂x
+
∂g

∂y
+
∂h

∂z
(7)

16.1.5 DEFINITION. If F(x, y, z) = f(x, y, z)i + g(x, y, z) j + h(x, y, z)k, then we

define the curl of F, written curl F, by

curl F =
(

∂h

∂y
−
∂g

∂z

)

i +
(

∂f

∂z
−
∂h

∂x

)

j +
(

∂g

∂x
−
∂f

∂y

)

k (8)

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Observe that div F and curl F depend on the point at which they are computed,

and hence are more properly written as div F(x, y, z) and curl F(x, y, z). However, even

though these functions are expressed in terms of x, y, and z, it can be proved that their

values at a fixed point depend on the point but not on the coordinate system selected. This is

important in applications, since it allows physicists and engineers to compute the curl and

divergence in any convenient coordinate system.

Before proceeding to some examples, we note that div F has scalar values, whereas curl F

has vector values (i.e., curl F is itself a vector field). Moreover, for computational purposes
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it is useful to note that the formula for the curl can be expressed in the determinant form

curl F =

∣

∣

∣

∣

∣

∣

∣

∣

i j k

∂

∂x

∂

∂y

∂

∂z

f g h

∣

∣

∣

∣

∣

∣

∣

∣

(9)

You should verify that Formula (8) results if the determinant is computed by interpreting

a “product” such as (∂/∂x)(g) to mean ∂g/∂x. Keep in mind, however, that (9) is just a

mnemonic device and not a true determinant, since the entries in a determinant must be

numbers, not vectors and partial derivative symbols.

Example 4 Find the divergence and the curl of the vector field

F(x, y, z) = x2yi + 2y3z j + 3zk

Solution. From (7)

div F =
∂

∂x
(x2y)+

∂

∂y
(2y3z)+

∂

∂z
(3z)

= 2xy + 6y2z+ 3

and from (9)

curl F =

∣

∣

∣

∣

∣

∣

∣

∣

∣

i j k

∂

∂x

∂

∂y

∂

∂z

x2y 2y3z 3z

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
[

∂

∂y
(3z)−

∂

∂z
(2y3z)

]

i +
[

∂

∂z
(x2y)−

∂

∂x
(3z)

]

j

+
[

∂

∂x
(2y3z)−

∂

∂y
(x2y)

]

k

= −2y3i − x2k ◭

•
•
•
•
•
•
•
•
•
•
•
•
•

FOR THE READER. Most computer algebra systems can compute gradient fields, diver-

gence, and curl. If you have a CAS with these capabilities, read the relevant documentation

and use your CAS to check the computations in Examples 2 and 4.

Example 5 Show that the divergence of the inverse-square field

F(x, y, z) =
c

(x2 + y2 + z2)3/2
(xi + y j + zk)

is zero.

Solution. The computations can be simplified by letting r = (x2 + y2 + z2)1/2, in which

case F can be expressed as

F(x, y, z) =
cxi + cy j + czk

r3
=
cx

r3
i +

cy

r3
j +

cz

r3
k

We leave it for you to show that

∂r

∂x
=
x

r
,

∂r

∂y
=
y

r
,

∂r

∂z
=
z

r

Thus

div F = c

[

∂

∂x

( x

r3

)

+
∂

∂y

( y

r3

)

+
∂

∂z

( z

r3

)

]

(10)
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But

∂

∂x

( x

r3

)

=
r3 − x(3r2)(x/r)

(r3)2
=

1

r3
−

3x2

r5

∂

∂y

( y

r3

)

=
1

r3
−

3y2

r5

∂

∂z

( z

r3

)

=
1

r3
−

3z2

r5

Substituting these expressions in (10) yields

div F = c

[

3

r3
−

3x2 + 3y2 + 3z2

r5

]

= c

[

3

r3
−

3r2

r5

]

= 0 ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

THE ∇ OPERATOR
Thus far, the symbol ∇ that appears in the gradient expression ∇φ has not been given a

meaning of its own. However, it is often convenient to view ∇ as an operator

∇ =
∂

∂x
i +

∂

∂y
j +

∂

∂z
k (11)

which when applied to φ(x, y, z) produces the gradient

∇φ =
∂φ

∂x
i +

∂φ

∂y
j +

∂φ

∂z
k

We call (11) the del operator. This is analogous to the derivative operator d/dx, which

when applied to f(x) produces the derivative f ′(x).

The del operator allows us to express the divergence of a vector field

F = f(x, y, z)i + g(x, y, z) j + h(x, y, z)k

in dot product notation as

div F = ∇ · F =
∂f

∂x
+
∂g

∂y
+
∂h

∂z
(12)

and the curl of this field in cross-product notation as

curl F = ∇ × F =

∣

∣

∣

∣

∣

∣

∣

∣

i j k

∂

∂x

∂

∂y

∂

∂z

f g h

∣

∣

∣

∣

∣

∣

∣

∣

(13)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

THE LAPLACIAN ∇
2

The operator that results by taking the dot product of the del operator with itself is denoted

by ∇
2 and is called the Laplacian

∗
operator. This operator has the form

∇
2 = ∇ · ∇ =

∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2
(14)

When applied to φ(x, y, z) the Laplacian operator produces the function

∇
2φ =

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2

Note that ∇
2φ can also be expressed as div (∇φ). The equation ∇

2φ = 0 or, equivalently,

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0

is known as Laplace’s equation. This partial differential equation plays an important role

in a wide variety of applications, resulting from the fact that it is satisfied by the potential

function for the inverse-square field.

∗
See biography on page 1100.



April 4, 2001 14:32 g65-ch16 Sheet number 8 Page number 1100 cyan magenta yellow black

1100 Topics in Vector Calculus

EXERCISE SET 16.1 Graphing Utility C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1 and 2, match the vector field F(x, y) with one

of the plots, and explain your reasoning.

1. (a) F(x, y) = xi (b) F(x, y) = sin xi + j

2. (a) F(x, y) = i + j

(b) F(x, y) =
x

√

x2 + y2
i +

y
√

x2 + y2
j

I

III IV

II

x

y

x

y

x

y

x

y

In Exercises 3 and 4, determine whether the statement about

the vector field F(x, y) is true or false. If false, explain why.

3. F(x, y) = x2i − y j.

(a) ‖F(x, y)‖→0 as (x, y)→(0, 0).

(b) If (x, y) is on the positive y-axis, then the vector points

in the negative y-direction.

(c) If (x, y) is in the first quadrant, then the vector points

down and to the right.

4. F(x, y) =
x

√

x2 + y2
i −

y
√

x2 + y2
j.

(a) As (x, y) moves away from the origin, the lengths of

the vectors decrease.

(b) If (x, y) is a point on the positive x-axis, then the vector

points up.

(c) If (x, y) is a point on the positive y-axis, the vector

points to the right.

In Exercises 5–8, sketch the vector field by drawing some

representative nonintersecting vectors. The vectors need not

be drawn to scale, but they should be in reasonably correct

proportion relative to each other.

5. F(x, y) = 2i − j 6. F(x, y) = y j, y > 0

7. F(x, y) = yi − x j. [Note: Each vector in the field is per-

pendicular to the position vector r = xi + y j.]

8. F(x, y) =
xi + y j

√

x2 + y2
. [Note: Each vector in the field is a

unit vector in the same direction as the position vector

r = xi + y j.]

∗
PIERRE-SIMON DE LAPLACE (1749–1827). French mathematician and physicist. Laplace is sometimes referred

to as the French Isaac Newton because of his work in celestial mechanics. In a five-volume treatise entitled Traité

de Mécanique Céleste, he solved extremely difficult problems involving gravitational interactions between the

planets. In particular, he was able to show that our solar system is stable and not prone to catastrophic collapse as

a result of these interactions. This was an issue of major concern at the time because Jupiter’s orbit appeared to

be shrinking and Saturn’s expanding; Laplace showed that these were expected periodic anomalies. In addition to

his work in celestial mechanics, he founded modern probability theory, showed with Lavoisier that respiration is

a form of combustion, and developed methods that fostered many new branches of pure mathematics.

Laplace was born to moderately successful parents in Normandy, his father being a farmer and cider merchant.

He matriculated in the theology program at the University of Caen at age 16 but left for Paris at age 18 with a

letter of introduction to the influential mathematician d’Alembert, who eventually helped him undertake a career

in mathematics. Laplace was a prolific writer, and after his election to the Academy of Sciences in 1773, the

secretary wrote that the Academy had never received so many important research papers by so young a person

in such a short time. Laplace had little interest in pure mathematics—he regarded mathematics merely as a tool

for solving applied problems. In his impatience with mathematical detail, he frequently omitted complicated

arguments with the statement, “It is easy to show that. . . .” He admitted, however, that as time passed he often had

trouble reconstructing the omitted details himself!

At the height of his fame, Laplace served on many government committees and held the posts of Minister

of the Interior and chancellor of the Senate. He barely escaped imprisonment and execution during the period

of the Revolution, probably because he was able to convince each opposing party that he sided with them.

Napoleon described him as a great mathematician but a poor administrator who “sought subtleties everywhere,

had only doubtful ideas, and . . . carried the spirit of the infinitely small into administration.” In spite of his genius,

Laplace was both egotistic and insecure, attempting to ensure his place in history by conveniently failing to credit

mathematicians whose work he used—an unnecessary pettiness since his own work was so brilliant. However,

on the positive side he was supportive of young mathematicians, often treating them as his own children. Laplace

ranks as one of the most influential mathematicians in history.



April 4, 2001 14:32 g65-ch16 Sheet number 9 Page number 1101 cyan magenta yellow black

16.1 Vector Fields 1101

In Exercises 9 and 10, use a graphing utility to generate a plot

of the vector field.

9. F(x, y) = i + cos y j 10. F(x, y) = yi − x j

In Exercises 11 and 12, confirm that φ is a potential function

for F(r) on some region, and state the region.

11. (a) φ(x, y) = tan−1 xy

F(x, y) =
y

1 + x2y2
i +

x

1 + x2y2
j

(b) φ(x, y, z) = x2 − 3y2 + 4z2

F(x, y, z) = 2xi − 6y j + 8zk

12. (a) φ(x, y) = 2y2 + 3x2y − xy3

F(x, y) = (6xy − y3)i + (4y + 3x2 − 3xy2)j

(b) φ(x, y, z) = x sin z+ y sin x + z sin y

F(x, y, z) = (sin z + y cos x)i + (sin x + z cos y) j

+ (sin y + x cos z)k

In Exercises 13–18, find div F and curl F.

13. F(x, y, z) = x2i − 2 j + yzk

14. F(x, y, z) = xz3i + 2y4x2 j + 5z2yk

15. F(x, y, z) = 7y3z2i − 8x2z5 j − 3xy4k

16. F(x, y, z) = exy i − cos y j + sin2 zk

17. F(x, y, z) =
1

√

x2 + y2 + z2
(xi + y j + zk)

18. F(x, y, z) = ln xi + exyzj + tan−1(z/x)k

In Exercises 19 and 20, find ∇ · (F × G).

19. F(x, y, z) = 2xi + j + 4yk

G(x, y, z) = xi + y j − zk

20. F(x, y, z) = yzi + xz j + xyk

G(x, y, z) = xy j + xyzk

In Exercises 21 and 22, find ∇ · (∇ × F).

21. F(x, y, z) = sin xi + cos(x − y) j + zk

22. F(x, y, z) = exzi + 3xey j − eyzk

In Exercises 23 and 24, find ∇ × (∇ × F).

23. F(x, y, z) = xy j + xyzk

24. F(x, y, z) = y2xi − 3yz j + xyk

C 25. Use a CAS to check the calculations in Exercises 19, 21,

and 23.

C 26. Use a CAS to check the calculations in Exercises 20, 22,

and 24.

In Exercises 27–34, let k be a constant, and let F = F(x, y, z),

G = G(x, y, z), and φ = φ(x, y, z). Prove the following

identities, assuming that all derivatives involved exist and

are continuous.

27. div(kF) = k div F 28. curl(kF) = k curl F

29. div(F + G) = div F + div G

30. curl(F + G) = curl F + curl G

31. div(φF) = φ div F + ∇φ · F

32. curl(φF) = φ curl F + ∇φ × F

33. div(curl F) = 0 34. curl(∇φ) = 0

35. Rewrite the identities in Exercises 27, 29, 31, and 33 in an

equivalent form using the notation ∇ · for divergence and

∇ × for curl.

36. Rewrite the identities in Exercises 28, 30, 32, and 34 in an

equivalent form using the notation ∇ · for divergence and

∇ × for curl.

In Exercises 37 and 38, verify that the radius vector

r = xi + y j + zk has the stated property.

37. (a) curl r = 0 (b) ∇‖r‖ =
r

‖r‖

38. (a) div r = 3 (b) ∇
1

‖r‖
= −

r

‖r‖3

In Exercises 39 and 40, let r = xi + y j + zk, let r = ‖r‖,
let f be a differentiable function of one variable, and let

F(r) = f(r)r.

39. (a) Use the chain rule and Exercise 37(b) to show that

∇f(r) =
f ′(r)

r
r

(b) Use the result in part (a) and Exercises 31 and 38(a) to

show that

div F = 3f(r)+ rf ′(r)

40. (a) Use part (a) of Exercise 39, Exercise 32, and Exercise

37(a) to show that

curl F = 0

(b) Use the result in part (a) of Exercise 39 and Exercises

31 and 38(a) to show that

∇
2
f(r) = 2

f ′(r)

r
+ f ′′(r)

41. Use the result in Exercise 39(b) to show that the divergence

of the inverse-square field F = r/‖r‖3 is zero.

42. Use the result of Exercise 39(b) to show that if F is a vector

field of the form F = f(‖r‖)r and if div F = 0, then F is an

inverse-square field. [Suggestion: Let r = ‖r‖ and multiply

3f(r)+ rf ′(r) = 0 through by r2. Then write the result as

a derivative of a product.

43. A curve C is called a flow line of a vector field F if F is a

tangent vector to C at each point along C.

(a) Let C be a flow line for F(x, y) = −yi + x j, and let

(x, y) be a point on C for which y 
= 0. Show that the

flow lines satisfy the differential equation

dy

dx
= −

x

y
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(b) Solve the differential equation in part (a) by separation

of variables, and show that the flow lines are concentric

circles centered at the origin.

C

Flow lines of

a vector field

Figure Ex-43

In Exercises 44–46, find a differential equation satisfied by

the flow lines of F (see Exercise 43), and solve it to find equa-

tions for the flow lines of F. Sketch some typical flow lines

and tangent vectors.

44. F(x, y) = i + x j 45. F(x, y) = xi + j, x > 0

46. F(x, y) = xi − y j, x > 0 and y > 0

16.2 LINE INTEGRALS

In earlier chapters we considered three kinds of integrals in rectangular coordinates:

single integrals over intervals, double integrals over two-dimensional regions, and

triple integrals over three-dimensional regions. In this section we will discuss integrals

along curves in two- or three-dimensional space.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

LINE INTEGRALS
Integrals along curves arise in a variety of problems. One such problem can be stated as

follows:

16.2.1 AN AREA PROBLEM. LetC be a smooth curve that extends between two points

in the xy-plane, and let f(x, y) be continuous and nonnegative on C. Find the area of

the “sheet” that is swept out by the vertical line segment that extends upward from the

point (x, y) to a height of f(x, y) and moves along C from one endpoint to the other

(Figure 16.2.1).

y

x

z

C

f (x, y)

(x, y)

Figure 16.2.1

We use the following limit process to find the area of the sheet:

• Divide C into n arcs by inserting a succession of distinct points P1, P2, . . . , Pn−1 be-

tween the initial and terminal points of C in the direction of increasing parameter. As

illustrated on the left side of Figure 16.2.2, these points divide the surface into n strips.

If we denote the area of the kth strip by �Ak , then the total area A of the sheet can be

y

x

z

P1

DA1
DA2

DA3

DAk
...

DAn
...

P2
P3

Pn –1

. . .
Pk –1

P*
k

Pk

f (x*
k, y*

k)

Dsk

Approximation

Figure 16.2.2



April 4, 2001 14:32 g65-ch16 Sheet number 11 Page number 1103 cyan magenta yellow black

16.2 Line Integrals 1103

expressed as

A = �A1 +�A2 + · · · +�An =
n

∑

k=1

�Ak

• The next step is to approximate the area �Ak of the kth strip, assuming that this strip

is narrow. For this purpose, let �sk be the length of the arc along C at the base of the

kth strip, and choose an arbitrary point P ∗
k (x

∗
k , y

∗
k ) on this arc. Since the strip is narrow

and f is continuous, the value of f will not vary much along the kth arc, so we can

assume that f has a constant value of f(x∗
k , y

∗
k ) on this arc. Thus, the area �Ak of

the kth strip can be closely approximated by the area of a rectangle with base �sk and

height f(x∗
k , y

∗
k ), as shown in the right part of Figure 16.2.2; that is,

�Ak ≈ f(x∗
k , y

∗
k )�sk

from which it follows that

A ≈
n

∑

k=1

f(x∗
k , y

∗
k )�sk

• If we now increase n so that the length of each arc approaches zero, then it is plausible

that the error in this approximation approaches zero, and the exact surface area is

A = lim
n→+�

n
∑

k=1

f(x∗
k , y

∗
k )�sk (1)

In deriving Formula (1) we assumed that f is continuous and nonnegative on the curve

C. If f is continuous on C and has both positive and negative values, then the limit

lim
n→+�

n
∑

k=1

f(x∗
k , y

∗
k )�sk

does not represent the area of the surface overC; rather, it represents a difference of areas—

the area between the curve C and the graph of f(x, y) above the xy-plane minus the area

between C and the graph of f(x, y) below the xy-plane. We call this the net signed area

between the curveC and the graph of f(x, y). Also, we call the limit in (1) the line integral

of f with respect to s along C and denote it by

∫

C

f(x, y) ds = lim
n→+�

n
∑

k=1

f(x∗
k , y

∗
k )�sk (2)

With this notation, the area of the surface in Figure 16.2.1 can be expressed as

A =
∫

C

f(x, y) ds (3)

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. In Section 6.1 we observed that the area of a region in the xy-plane under a

curve or between two curves over an interval [a, b] is obtained by integrating the length

of a vertical cross section of the region from a to b (see the remark preceding Example

1 in Section 6.1). Similarly, Formula (3) states that the area of a sheet along a curve C is

obtained by integrating the length of a vertical cross section of the sheet along the curve C.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

EVALUATING LINE INTEGRALS
Except in simple cases, it will not be feasible to evaluate a line integral directly from (2).

However, we will now show that it is possible to express a line integral as an ordinary

definite integral, so that no special methods of evaluation are required. To see how this can

be done, suppose that the curve C is represented by the parametric equations

x = x(t), y = y(t) (a ≤ t ≤ b)
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Moreover, suppose that the points Pk−1 and Pk in Figure 16.2.3 correspond to parameter

values of tk−1 and tk , respectively, and that P ∗
k (x

∗
k , y

∗
k ) corresponds to the parameter value

t∗k . If we let �tk = tk − tk−1, then we can approximate �sk as

�sk ≈
√

(�xk)2 + (�yk)2 =

√

(

�xk

�tk

)2

+
(

�yk

�tk

)2

�tk (4)

from which it follows that (2) can be expressed as

∫

C

f(x, y) ds = lim
n→+�

n
∑

k=1

f(x(t∗k ), y(t
∗
k ))

√

(

�xk

�tk

)2

+
(

�yk

�tk

)2

�tk

which suggests that

∫

C

f(x, y) ds =
∫ b

a

f(x(t), y(t))

√

(

dx

dt

)2

+
(

dy

dt

)2

dt (5)

In words, this formula states that a line integral can be evaluated by expressing the integrand

in terms of the parameter,multiplying the integrand by an appropriate “radical, ” and then

integrating from the initial value of the parameter to the final value of the parameter.

In the special case where t is an arc length parameter, say t = s, it follows from Formula

(20) of Section 13.3 that the radical in (5) reduces to 1, so the integration formula simplifies to

∫

C

f(x, y) ds =
∫ b

a

f(x(s), y(s)) ds (6)

Pk –1

Pk

Dyk

Dxk

Dsk

Figure 16.2.3

Example 1 Evaluate the line integral
∫

C
(1 + xy2) ds from (0, 0) to (1, 2) along the line

segment C that is represented by the parametric equations x = t, y = 2t (0 ≤ t ≤ 1).

Solution. It follows from Formula (5) that

∫

C

(1 + xy2) ds =
∫ 1

0

(1 + (t)(4t2))

√

(

dx

dt

)2

+
(

dy

dt

)2

dt

=
∫ 1

0

(1 + 4t3)
√

5 dt

=
√

5

[

t + t4
]1

0
= 2

√
5 ◭

Example 2 Find the area of the surface extending upward from the circle x2 + y2 = 1

in the xy-plane to the parabolic cylinder z = 1 − x2 (Figure 16.2.4).

y

x

z = 1 – x2

x2 + y2 = 1

z

Figure 16.2.4
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Solution. The area A of the surface can be expressed as the line integral

A =
∫

C

(1 − x2) ds (7)

where C is the circle x2 + y2 = 1. This circle can be parametrized in terms of arc length as

x = cos s, y = sin s (0 ≤ s ≤ 2π)

Thus, it follows from (6) and (7) that

A =
∫

C

(1 − x2) ds =
∫ 2π

0

(1 − cos2 s) ds

=
∫ 2π

0

sin2 s ds =
1

2

∫ 2π

0

(1 − cos 2s) ds = π ◭

•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. We will show later in this section that we would have obtained the same value

for (7) had we used any other smooth parametrization of the circle x2 + y2 = 1 in the

xy-plane.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

LINE INTEGRALS IN 3-SPACE
If C is a smooth curve that extends between two points in an xyz-coordinate system in

3-space, and if f(x, y, z) is continuous on C, then the line integral of f with respect to s

along C is defined as

∫

C

f(x, y, z) ds = lim
n→+�

n
∑

k=1

f(x∗
k , y

∗
k , z

∗
k)�sk (8)

where the sum on the right side is obtained by subdividing the curveC into n arcs, choosing

an arbitrary point (x∗
k , y

∗
k , z

∗
k) in the kth arc, multiplying f(x∗

k , y
∗
k , z

∗
k) by the length�sk of

the kth arc, and summing over all n arcs. Here n→+� indicates the process of increasing

the number of arcs on C in such a way that the lengths of the arcs approach zero. If the

curve C is represented by the parametric equations

x = x(t), y = y(t), z = z(t) (a ≤ t ≤ b)

then (8) can be evaluated from the formula

∫

C

f(x, y, z) ds =
∫ b

a

f(x(t), y(t), z(t))

√�
dx

dt�2 +
�
dy

dt�2 +
�
dz

dt�2 dt (9)

and if t is an arc length parameter, say t = s, then it follows from Formula (21) of Section

13.3 that the radical in (9) reduces to 1, so the integration formula simplifies to

∫

C

f(x, y, z) ds =
∫ b

a

f(x(s), y(s), z(s)) ds (10)

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Observe that Formulas (9) and (10) have the same form as (5) and (6) but with

an additional z-component. In general, line integrals along curves in 3-space do not have a

simple area interpretation, so there is no analog of Formula (3). However, we will see later in

this section that line integrals along curves in 3-space have other important interpretations.

Example 3 Evaluate the line integral
∫

C
(xy + z3) ds from (1, 0, 0) to (−1, 0, π) along

the helix C that is represented by the parametric equations

x = cos t, y = sin t, z = t (0 ≤ t ≤ π)

(Figure 16.2.5).

p

–1

0

1

0

1

0

z

x

y

(1, 0, 0)

(–1, 0, p)

Figure 16.2.5
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Solution. From (9)

∫

C

(xy + z3) ds =
∫ π

0

(cos t sin t + t3)

√�
dx

dt�2 +

�
dy

dt�2 +

�
dz

dt�2 dt
=

∫ π

0

(cos t sin t + t3)
�
(− sin t)2 + (cos t)2 + 1 dt

=
√

2

∫ π

0

(cos t sin t + t3) dt

=
√

2�sin2 t

2
+
t4

4�π0 =
√

2π4

4
◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

MASS OF A WIRE AS A LINE
INTEGRAL

We will now show how a line integral can be used to calculate the mass of a thin wire. For

this purpose consider an idealized thin wire in 2-space or 3-space that is bent in the shape of

a curveC. If the composition of the wire is uniform so that its mass is distributed uniformly,

then the wire is said to be homogeneous, and we define the linear mass density of the wire

to be the total mass divided by the total length. For example, a homogeneous wire with a

mass of 2 g and a length of 8 cm would have a linear mass density of 2
8

= 0.25 g/cm.

However, if the mass of the wire is not uniformly distributed, then the linear mass density

is not a useful measure, since it does not account for variations in mass concentration. In

this case we describe the mass concentration at a point by a mass density function δ, which

we view as a limit; that is,

δ = lim
�s→0

�M

�s
(11)

where �M and �s denote the mass and length of a small section of wire centered at the

point (Figure 16.2.6). Observe that �M/�s is the linear mass density of the small section

of wire, so that the mass density function at a point can be viewed informally as the limit

of the linear mass densities of small wire sections centered at the point.

C

D
s

MassDM

Figure 16.2.6

To translate this informal idea into a useful formula, suppose that δ = δ(x, y) is the

density function for a thin smooth wire C in 2-space. Assume that the wire is subdivided

into n small sections; let (x∗
k , y

∗
k ) be the center of the kth section, let �Mk be the mass of

the kth section, and let�sk be the length of the kth section. Since we are assuming that the

sections are small, it follows from (11) that the mass of the kth section can be approximated as

�Mk ≈ δ(x∗
k , y

∗
k )�sk

and hence the mass M of the entire wire can be approximated as

M =
n

∑

k=1

�Mk ≈
n

∑

k=1

δ(x∗
k , y

∗
k )�sk (12)

If we now increase n in such a way that the lengths of the sections approach zero, then it is

plausible that the error in (12) will approach zero, and the exact value of M will be given

by the line integral

M =
∫

C

δ(x, y) ds (13)

Similarly, the mass M of a wire C in 3-space with density function δ(x, y, z) is given by

M =
∫

C

δ(x, y, z) ds (14)

x

y

–5 5

5 y = Ö25 – x2 

Figure 16.2.7

Example 4 Suppose that a semicircular wire has the equation y =
√

25 − x2 and that

its mass density is δ(x, y) = 15 − y (Figure 16.2.7). Physically, this means the wire has a
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maximum density of 15 units at the base (y = 0) and that the density of the wire decreases

linearly with respect to y to a value of 10 units at the top (y = 5). Find the mass of the wire.

Solution. The mass M of the wire can be expressed as the line integral

M =
∫

C

δ(x, y) ds =
∫

C

(15 − y) ds (15)

along the semicircle C. To evaluate this integral we will express C parametrically as

x = 5 cos t, y = 5 sin t (0 ≤ t ≤ π)

Thus, it follows from (5) and (15) that

M =
∫

C

(15 − y) ds =
∫ π

0

(15 − 5 sin t)

√�
dx

dt�2 +

�
dy

dt�2 dt
=

∫ π

0

(15 − 5 sin t)
�
(−5 sin t)2 + (5 cos t)2 dt

= 5

∫ π

0

(15 − 5 sin t) dt

= 5
[

15t + 5 cos t
]π

0

≈ 75π− 50 ≈ 185.6 units of mass ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

ARC LENGTH AS A LINE INTEGRAL
In the special cases where f(x, y) and f(x, y, z) are 1, Formulas (5) and (9) become

∫

C

ds =
∫ b

a

√�
dx

dt�2 +

�
dy

dt�2 dt
∫

C

ds =
∫ b

a

√�
dx

dt�2 +

�
dy

dt�2 +

�
dz

dt�2 dt
However, it follows from Formulas (2) and (4) of Section 13.3 that these integrals represent

the arc length of C. Thus, we have established the following result.

16.2.2 THEOREM. If C is a smooth parametric curve in 2-space or 3-space, then its

arc length L can be expressed as

L =
∫

C

ds (16)

•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. This result adds nothing new computationally, since Formula (16) is just a

reformulation of the arc length formulas in Section 13.3. However, the relationship between

line integrals and arc length is important to know.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

LINE INTEGRALS WITH RESPECT
TO x, y , AND z

There are other important types of line integrals that result by replacing �sk in definitions

(2) and (8) by �xk = xk − xk−1, �yk = yk − yk−1, or �zk = zk − zk−1, where (xk, yk, zk)

and (xk−1, yk−1, zk−1) are the coordinates of the points Pk and Pk−1 in Figure 16.2.2. For

example, in 2-space we define
∫

C

f(x, y) dx = lim
n→+�

n
∑

k=1

f(x∗
k , y

∗
k )�xk (17)

∫

C

f(x, y) dy = lim
n→+�

n
∑

k=1

f(x∗
k , y

∗
k )�yk (18)
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and in 3-space we define
∫

C

f(x, y, z) dx = lim
n→+�

n
∑

k=1

f(x∗
k , y

∗
k , z

∗
k)�xk (19)

∫

C

f(x, y, z) dy = lim
n→+�

n
∑

k=1

f(x∗
k , y

∗
k , z

∗
k)�yk (20)

∫

C

f(x, y, z) dz = lim
n→+�

n
∑

k=1

f(x∗
k , y

∗
k , z

∗
k)�zk (21)

We will call these line integrals with respect to x, y, and z (as appropriate) in contrast to

(2) and (8), which are line integrals with respect to s (also called line integrals with respect

to arc length).

The basic procedure for evaluating these line integrals is to find parametric equations for

C, say

x = x(t), y = y(t), z = z(t) (a ≤ t ≤ b)

and then express the integrand in terms of t . For example,
∫

C

f(x, y) dx =
∫ b

a�f(x(t), y(t))dxdt�dt =
∫ b

a

f(x(t), y(t))x ′(t) dt

We omit the formal proof.

For reference, we list the relevant formulas.

∫

C

f(x, y) dx =
∫ b

a

f(x(t), y(t))x ′(t) dt (22)

∫

C

f(x, y) dy =
∫ b

a

f(x(t), y(t))y ′(t) dt (23)

∫

C

f(x, y, z) dx =
∫ b

a

f(x(t), y(t), z(t))x ′(t) dt (24)

∫

C

f(x, y, z) dy =
∫ b

a

f(x(t), y(t), z(t))y ′(t) dt (25)

∫

C

f(x, y, z) dz =
∫ b

a

f(x(t), y(t), z(t))z′(t) dt (26)

Frequently, the line integrals with respect to x and y occur in combination, in which case

we dispense with one of the integral signs and write

∫

C

f(x, y) dx + g(x, y) dy =
∫

C

f(x, y) dx +
∫

C

g(x, y) dy (27)

and similarly,

∫

C

f(x, y, z) dx + g(x, y, z) dy + h(x, y, z) dz

=
∫

C

f(x, y, z) dx +
∫

C

g(x, y, z) dy +
∫

C

h(x, y, z) dz (28)
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Example 5 Evaluate
∫

C

2xy dx + (x2 + y2) dy

along the circular arc C given by x = cos t , y = sin t (0 ≤ t ≤ π/2) (Figure 16.2.8).

C

x

y

1

1

x = cos t, y = sin t (0 ≤  t ≤  p/2)

Figure 16.2.8

Solution. From (22) and (23)
∫

C

2xy dx =
∫ π/2

0

(2 cos t sin t)�d
dt
(cos t)

�
dt

= −2

∫ π/2

0

sin2 t cos t dt = −
2

3
sin3 t

�π/2
0

= −
2

3

∫

C

(x2 + y2) dy =
∫ π/2

0

(cos2 t + sin2 t)�d
dt
(sin t)

�
dt

=
∫ π/2

0

cos t dt = sin t

�π/2
0

= 1

Thus, from (27)
∫

C

2xy dx + (x2 + y2) dy =
∫

C

2xy dx +
∫

C

(x2 + y2) dy

= −
2

3
+ 1 =

1

3
◭

Example 6

(a) Show that
∫

C
f(x, y) dx = 0 along any line segment parallel to the y-axis.

(b) Show that
∫

C
f(x, y) dy = 0 along any line segment parallel to the x-axis.

Solution. A line segment parallel to the y-axis can be represented parametrically by

equations of the form x = k, y = t , where k is a constant. Thus, x ′(t) = 0 in (22). Similarly,

a line segment parallel to the x-axis can be represented parametrically by equations of the

form x = t, y = k, where k is a constant. Thus, y ′(t) = 0 in (23). ◭

• FOR THE READER. What is the analog of Example 6 in 3-space?

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

LINE INTEGRALS ALONG
PIECEWISE SMOOTH CURVES

Thus far, we have only considered line integrals along smooth curves. However, the notion

of a line integral can be extended to curves formed from finitely many smooth curves

C1, C2, . . . , Cn joined end to end. Such a curve is called piecewise smooth (Figure 16.2.9).

We define a line integral along a piecewise smooth curve C to be the sum of the integrals

along the sections:
∫

C

=
∫

C1

+
∫

C2

+ · · · +
∫

Cn

C1

C1

C2

C3

C4

C1

C2

C2

C3 

Figure 16.2.9
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Example 7 Evaluate
∫

C

x2y dx + x dy

in a counterclockwise direction around the triangular path shown in Figure 16.2.10.

x

y

C1
O

C2
C3

B(1, 2)

A(1, 0)

Figure 16.2.10

Solution. We will integrate over C1, C2, and C3 separately and add the results. For each

of the three integrals we must find parametric equations that trace the path of integration

in the correct direction. For this purpose recall from Formula (7) of Section 13.1 that the

graph of the vector-valued function

r(t) = (1 − t)r0 + tr1 (0 ≤ t ≤ 1)

is the line segment joining r0 and r1, oriented in the direction from r0 to r1. Thus, the line

segments C1, C2, and C3 can be represented in vector notation as

C1 : r(t) = (1 − t)〈0, 0〉 + t〈1, 0〉 = 〈t, 0〉
C2 : r(t) = (1 − t)〈1, 0〉 + t〈1, 2〉 = 〈1, 2t〉
C3 : r(t) = (1 − t)〈1, 2〉 + t〈0, 0〉 = 〈1 − t, 2 − 2t〉

where t varies from 0 to 1 in each case. From these equations and Example 6 we obtain
∫

C1

x2y dx + x dy =
∫

C1

x2y dx =
∫ 1

0

(t2)(0)
d

dt
[t] dt = 0

∫

C2

x2y dx + x dy =
∫

C2

x dy =
∫ 1

0

(1)
d

dt
[2t] dt = 2

∫

C3

x2y dx + x dy =
∫ 1

0

(1 − t)2(2 − 2t)
d

dt
[1 − t] dt +

∫ 1

0

(1 − t)
d

dt
[2 − 2t] dt

= 2

∫ 1

0

(t − 1)3 dt + 2

∫ 1

0

(t − 1) dt = − 1
2

− 1 = − 3
2

Thus,
∫

C

x2y dx + x dy = 0 + 2 +
(

− 3
2

)

= 1
2

◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

CHANGE OF PARAMETER IN LINE
INTEGRALS

Although parametric equations of a curve are used to evaluate line integrals along that curve,

the line integrals themselves are defined without reference to a parametrization. It follows

that the value of the line integral should be independent of any (oriented) parametrization

of the curve. This is the content of following theorem, which we state without formal proof.

16.2.3 THEOREM (Independence of Parametrization). The value of a line integral along

a curve C does not depend on the parametrization of C in the sense that any two

parametrizations of C with the same orientation produce the same value for the line

integral.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. This is an extremely important theorem because it allows us to choose any

convenient parametrization for the path of integration without concern that the choice will

affect the value of the integral. Indeed, we have tacitly used this result in all of the examples

in this section where we chose the parametric equations for C.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

REVERSING THE DIRECTION OF
INTEGRATION

Suppose that C is a parametric curve that begins at pointA and ends at point B when traced

in the direction of increasing parameter. If the curve C is reparametrized so that it is traced

from B to A as the parameter increases, then we denote the reparametrized curve by −C.

Thus, C and −C consist of the same points but have opposite orientations (Figure 16.2.11).

When the orientation of C is reversed, the signs of�xk ,�yk , and�zk in (17) to (21) are

reversed, so the effect is to reverse the signs of the line integrals with respect to x, y, and
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z. However, reversing the orientation of C has no effect on a line integral with respect to s

because the quantity �sk in (2) and (8) denotes an arc length, which is positive regardless

of the orientation. Thus, we have the following result, which we state without formal proof.

A

B

C

A

B

–C

Figure 16.2.11

16.2.4 THEOREM (Reversal of Orientation). If C is a smooth parametric curve, then a

smooth change of parameter that reverses the orientation of C changes the sign of a line

integral along C with respect to x, y, or z, but leaves the value of a line integral along

C with respect to arc length unchanged.

It follows from this theorem that

∫

−C
f(x, y) dx + g(x, y) dy = −

∫

C

f(x, y) dx + g(x, y) dy (29)

∫

−C
f(x, y) ds =

∫

C

f(x, y) ds (30)

and similarly for line integrals in 3-space.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

WORK AS A LINE INTEGRAL
In Section 6.6 we first defined the work W performed by a force of constant magnitude

acting on an object in the direction of motion (Definition 6.6.1), and later in that section

we extended the definition to allow for a force of variable magnitude acting in the direction

of motion (Definition 6.6.3). In Section 12.3 we took the concept of work a step further

by defining the work W performed by a constant force F acting at a fixed angle to the

displacement vector
−→
PQ to be

W = F ·
−→
PQ (31)

[Formula (14) of Section 12.3]. Our next goal is to define a more general concept of work—

the work performed by a variable force acting on a particle that moves along a curved path

in 2-space or 3-space.

In many applications variable forces arise from force fields (gravitational fields, electro-

magnetic fields, and so forth), so we will consider the problem of work in that context. More

precisely, let us assume that a particle moves along a smooth parametric curve C through

a continuous force field F(x, y) in 2-space or F(x, y, z) in 3-space. We will call the work

done by F the work performed by the force field. To motivate an appropriate definition for

the work performed by the force field, we will use a limit process, and since the procedure is

the same in 2-space and 3-space, we will discuss it for 3-space only. The idea is as follows:

A

B

P1

P2

P3

Pn–1

Fk
*

Tk
*

Pk

Pk–1

(xk, yk, zk)
* * *

Figure 16.2.12

• Assume that the particle moves along C from a point A to a point B as the param-

eter increases, and divide C into n arcs by inserting a succession of distinct points

P1, P2, . . . , Pn−1 between A and B in the direction of increasing parameter. Denote

the length of the kth arc by �sk . Let (x∗
k , y

∗
k , z

∗
k) be any point on the kth arc, and let

T∗
k = T(x∗

k , y
∗
k , z

∗
k) be the unit tangent vector and F∗

k = F(x∗
k , y

∗
k , z

∗
k) the force vector

at this point (Figure 16.2.12).

• If the kth arc is small, then the force will not vary much, so we can approximate the

force by the constant value F∗
k on this arc. Moreover, the direction of motion will not

vary much over the small arc, so we can assume that the particle moves in the direction

of T∗
k for a distance of�sk; that is, the particle has a linear displacement�skT

∗
k . Thus,

it follows from (31) that the work �Wk performed by the vector field along the kth arc

can be approximated as

�Wk ≈ F∗
k · (�skT

∗
k) = (F∗

k · T∗
k)�sk

and the total workW performed by the vector field as the particle moves along C from
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A to B can be approximated as

W ≈
n

∑

k=1

(F∗
k · T∗

k)�sk

• If we now increase n so that the length of each arc approaches zero, then it is plausible

that the error in the approximations approaches zero, and the exact work performed by

the vector field is

W = lim
n→+�

n
∑

k=1

(F∗
k · T∗

k)�sk =
∫

C

F(x, y, z) · T(x, y, z) ds

Thus, we are led to the following definition:

16.2.5 DEFINITION. If F is a continuous vector field and C is a smooth parametric

curve in 2-space or 3-space with unit tangent vector T, then the work performed by the

vector field on a particle that moves along C in the direction of increasing parameter is

W =
∫

C

F · T ds (32)

•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. In words, this definition states that the work performed by a vector field on a

particle moving along a parametric curveC is obtained by integrating the scalar tangential

component of force along C.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

A METHOD FOR CALCULATING
WORK

Although Formula (32) can be used to calculate work, it is not usually the best choice. A

more useful formula can be obtained by using Formula (6) of Section 13.4 to express T as

T =
dr

ds

This suggests that (32) can be expressed as

W =
∫

C

F · dr (33)

in which dr is interpreted as

dr = dxi + dy j or dr = dxi + dy j + dzk (34)

depending on whether C is in 2-space or 3-space.

Example 8 Find the work done by the force field

F(x, y) = x3yi + (x − y) j

on a particle that moves along the parabola y = x2 from (−2, 4) to (1, 1) (see Fig-

ure 16.2.13).

-2 -1 0 1 2

-2 -1 0 1 2

0

1

2

4

3

0

1

2

4

3

Figure 16.2.13

Solution. If we use x = t as the parameter, the path C of the particle can be expressed

parametrically as

x = t, y = t2 (−2 ≤ t ≤ 1)

or in vector notation as

r(t) = t i + t2 j (−2 ≤ t ≤ 1)
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Thus, from (33) the work W done by F is

W =
∫

C

F · dr =
∫

C

(x3yi + (x − y) j) · (dxi + dy j)

=
∫

C

x3y dx + (x − y) dy =
∫ 1

−2

(t5 + (t − t2)(2t)) dt

=
1

6
t6 +

2

3
t3 −

1

2
t4�1

−2

= 3

where the units for W depend on the units chosen for force and distance. ◭

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. In light of Theorem 16.2.4, you might expect that reversing the orientation

of C in Formula (32) would have no effect on the work W performed by the vector field.

However, reversing the orientation of C reverses the orientation of T in the integrand and

hence reverses the sign of the integral; that is,

∫

−C
F · T ds = −

∫

C

F · T ds (35)

∫

−C
F · dr = −

∫

C

F · dr (36)

Thus, in Example 8 the work performed on a particle that moves along the given parabola

from (1, 1) to (−2, 4) is −3, and the work performed on a particle that moves along the

parabola from (−2, 4) to (1, 1) and then back along the parabola to (−2, 4) is zero.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

WORK EXPRESSED IN SCALAR
FORM

We conclude this section by noting that it is sometimes useful to express Formula (33) in

scalar form. For example, if F = F(x, y) = f(x, y)i + g(x, y) j is a vector field in 2-space,

then

F · dr = f(x, y) dx + g(x, y) dy

so (33) can be expressed as

W =
∫

C

f(x, y) dx + g(x, y) dy (37)

and similarly in 3-space as

W =
∫

C

f(x, y, z) dx + g(x, y, z) dy + h(x, y, z) dz (38)

EXERCISE SET 16.2 C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1. Let C be the line segment from (0, 0) to (0, 1). In each part,

evaluate the line integral alongC by inspection, and explain

your reasoning.

(a)

∫

C

ds (b)

∫

C

sin xy dy

2. Let C be the line segment from (0, 2) to (0, 4). In each part,

evaluate the line integral alongC by inspection, and explain

your reasoning.

(a)

∫

C

ds (b)

∫

C

exy dx
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3. Let C be the curve represented by the equations

x = 2t, y = 3t2 (0 ≤ t ≤ 1)

In each part, evaluate the line integral along C.

(a)

∫

C

(x − y) ds (b)

∫

C

(x − y) dx

(c)

∫

C

(x − y) dy

4. Let C be the curve represented by the equations

x = t, y = 3t2, z = 6t3 (0 ≤ t ≤ 1)

In each part, evaluate the line integral along C.

(a)

∫

C

xyz2 ds (b)

∫

C

xyz2 dx

(c)

∫

C

xyz2 dy (d)

∫

C

xyz2 dz

5. In each part, evaluate the integral
∫

C

(3x + 2y) dx + (2x − y) dy

along the stated curve.

(a) The line segment from (0, 0) to (1, 1).

(b) The parabolic arc y = x2 from (0, 0) to (1, 1).

(c) The curve y = sin(πx/2) from (0, 0) to (1, 1).

(d) The curve x = y3 from (0, 0) to (1, 1).

6. In each part, evaluate the integral
∫

y dx + z dy − x dz

along the stated curve.

(a) The line segment from (0, 0, 0) to (1, 1, 1).

(b) The twisted cubic x = t, y = t2, z = t3 from (0, 0, 0)

to (1, 1, 1).

(c) The helix x = cosπt, y = sinπt, z = t from (1, 0, 0)

to (−1, 0, 1).

In Exercises 7–10, evaluate the line integral with respect to s

along the parametric curve C.

7.

∫

C

1

1 + x
ds

C: x = t , y = 2
3
t3/2 (0 ≤ t ≤ 3)

8.

∫

C

x

1 + y2
ds

C: x = 1 + 2t , y = t (0 ≤ t ≤ 1)

9.

∫

C

3x2yz ds

C: x = t , y = t2, z = 2
3
t3 (0 ≤ t ≤ 1)

10.

∫

C

e−z

x2 + y2
ds

C: x = 2 cos t , y = 2 sin t , z = t (0 ≤ t ≤ 2π)

In Exercises 11–18, evaluate the line integral along the para-

metric curve C.

11.

∫

C

(x + 2y) dx + (x − y) dy

C: x = 2 cos t , y = 4 sin t (0 ≤ t ≤ π/4)

12.

∫

C

(x2 − y2) dx + x dy

C: x = t2/3, y = t (−1 ≤ t ≤ 1)

13.

∫

C

−y dx + x dy

C: y2 = 3x from (3, 3) to (0, 0)

14.

∫

C

(y − x) dx + x2y dy

C: y2 = x3 from (1,−1) to (1, 1)

15.

∫

C

(x2 + y2) dx − x dy

C: x2 + y2 = 1, counterclockwise from (1, 0) to (0, 1)

16.

∫

C

(y − x) dx + xy dy

C: the line segment from (3, 4) to (2, 1)

17.

∫

C

yz dx − xz dy + xy dz

C: x = et , y = e3t , z = e−t (0 ≤ t ≤ 1)

18.

∫

C

x2 dx + xy dy + z2 dz

C: x = sin t, y = cos t, z = t2 (0 ≤ t ≤ π/2)

In Exercises 19 and 20, use a CAS to evaluate the line inte-

grals along the given parametric curves.

C 19. (a)

∫

C

(x3 + y3) ds

C: x = et , y = e−t (0 ≤ t ≤ ln 2)

(b)

∫

C

xez dx + (x − z) dy + (x2 + y2 + z2) dz

C: x = sin t, y = cos t (0 ≤ t ≤ π/2)

C 20. (a)

∫

C

x7y3 ds

C: x = cos3 t, y = sin3 t (0 ≤ t ≤ π/2)

(b)

∫

C

x5z dx + 7y dy + y2z dz

C: x = t, y = t2, z = ln t (1 ≤ t ≤ e)

In Exercises 21 and 22, evaluate
∫

C
y dx − x dy along the

curve C shown in the figure.

21.

x

y

(1, 1)

(b)

x

y

(0, 1)

(1, 0)

(a)
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22.

x

y(b)

x

y

(1, 1)

(2, 0) (–5, 0) (5, 0)

(0, 5)

(a)

In Exercises 23 and 24, evaluate
∫

C
x2z dx − yx2 dy + 3 dz

along the curve C shown in the figure.

23.

y

z

x

1

1

1

24.

y

z

x

1

1

1

In Exercises 25–28, evaluate
∫

C
F · dr along the curve C.

25. F(x, y) = x2i + xy j

C: r(t) = 2 cos t i + 2 sin t j (0 ≤ t ≤ π)

26. F(x, y) = x2yi + 4 j

C: r(t) = et i + e−t j (0 ≤ t ≤ 1)

27. F(x, y) = (x2 + y2)−3/2(xi + y j)

C: r(t) = et sin t i + et cos t j (0 ≤ t ≤ 1)

28. F(x, y, z) = zi + x j + yk

C: r(t) = sin t i + 3 sin t j + sin2 tk (0 ≤ t ≤ π/2)

29. Find the mass of a thin wire shaped in the form of the cir-

cular arc y =
√

9 − x2 (0 ≤ x ≤ 3) if the density function

is δ(x, y) = x
√
y.

30. Find the mass of a thin wire shaped in the form of the curve

x = et cos t , y = et sin t (0 ≤ t ≤ 1) if the density function

δ is proportional to the distance from the origin.

31. Find the mass of a thin wire shaped in the form of the helix

x = 3 cos t , y = 3 sin t , z = 4t (0 ≤ t ≤ π/2) if the density

function is δ = kx/(1 + y2) (k > 0).

32. Find the mass of a thin wire shaped in the form of the curve

x = 2t , y = ln t , z = 4
√
t (1 ≤ t ≤ 4) if the density

function is proportional to the distance above the xy-plane.

In Exercises 33–36, find the work done by the force field F

on a particle that moves along the curve C.

33. F(x, y) = xyi + x2 j

C: x = y2 from (0, 0) to (1, 1)

34. F(x, y) = (x2 + xy)i + (y − x2y) j

C: x = t, y = 1/t (1 ≤ t ≤ 3)

35. F(x, y, z) = xyi + yz j + xzk

C: r(t) = t i + t2 j + t3k (0 ≤ t ≤ 1)

36. F(x, y, z) = (x + y)i + xy j − z2k

C: along line segments from (0, 0, 0) to (1, 3, 1) to

(2,−1, 4)

In Exercises 37 and 38, find
∫

C
F · dr by inspection for the

force field F(x, y) = i + j and the curve C shown in the

figure. Explain your reasoning. [For clarity, the vectors in the

force field are shown at less than true scale.]

37.

x

y

4

4

-4

-4

38.

x

y

4

4

-4

-4

In Exercises 39 and 40, find the work done by the force field

F(x, y) =
1

x2 + y2
i +

4

x2 + y2
j

on a particle that moves along the curveC shown in the figure.

39.

x

y

(0, 4)

(4, 0)

40.

x

y

(6, 3)

In Exercises 41 and 42, use a line integral to find the area of

the surface.

41. The surface that extends upward from the parabola y = x2

(0 ≤ x ≤ 2) in the xy-plane to the plane z = 3x.

42. The surface that extends upward from the semicircle

y =
√

4 − x2 in the xy-plane to the surface z = x2y.

43. As illustrated in the accompanying figure, a sinusoidal cut

is made in the top of a cylindrical tin can. Suppose that the

base is modeled by the parametric equations x = cos t,

y = sin t, z = 0 (0 ≤ t ≤ 2π), and the height of the cut as

a function of t is z = 2 + 0.5 sin 3t.

(a) Use a geometric argument to find the lateral surface area

of the cut can.

(b) Write down a line integral for the surface area.

(c) Use the line integral to calculate the surface area.

z

x y

Figure Ex-43
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44. Evaluate the integral

∫

−C

x dy − y dx

x2 + y2
, whereC is the circle

x2 + y2 = a2 traversed counterclockwise.

45. Suppose that a particle moves through the force field

F(x, y) = xyi + (x − y) j from the point (0, 0) to the

point (1, 0) along the curve x = t, y = λt (1 − t). For what

value of λ will the work done by the force field be 1?

46. A farmer weighing 150 lb carries a sack of grain weighing

20 lb up a circular helical staircase around a silo of radius

25 ft. As the farmer climbs, grain leaks from the sack at a

rate of 1 lb per 10 ft of ascent. How much work is performed

by the farmer in climbing through a vertical distance of 60

ft in exactly four revolutions? [Hint: Find a vector field that

represents the force exerted by the farmer in lifting his own

weight plus the weight of the sack upward at each point

along his path.]

16.3 INDEPENDENCE OF PATH; CONSERVATIVE VECTOR FIELDS

In this section we will study properties of vector fields that relate to the work they

perform on particles moving along various curves. In particular, we will show that

for certain kinds of vector fields the work that the field performs on a particle moving

along a curve depends only on the endpoints of the curve and not on the curve itself.

Such vector fields are of special importance in physics and engineering.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

WORK INTEGRALS
We saw in the last section that if F is a vector field in 2-space or 3-space, then the work

performed by the field on a particle moving along a parametric curveC from an initial point

A to a final point B is given by the integral
∫

C

F · T ds or, equivalently,

∫

C

F · dr

Accordingly, we call an integral of this type a work integral. At the end of the last section

we noted that a work integral can be expressed in scalar form as
∫

C

F · dr =
∫

C

f(x, y) dx + g(x, y) dy 2-space (1)

∫

C

F · dr =
∫

C

f(x, y, z) dx + g(x, y, z) dy + h(x, y, z) dz 3-space (2)

where f , g, and h are the component functions of F.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INDEPENDENCE OF PATH
The parametric curve C in a work integral is called the path of integration. One of the

important problems in applications is to determine how the path of integration affects the

work performed by a vector field on a particle that moves from a fixed point P to a fixed

point Q. We will show shortly that if the vector field F is conservative (i.e., is the gradient

of some potential function φ), then the work that the field performs on a particle that moves

from P to Q does not depend on the particular path C that the particle follows. This is

illustrated in the following example.

0 1
0

1

Vectors not to scale

Figure 16.3.1

Example 1 The vector field F(x, y) = yi + x j is conservative since it is the gradient

of φ(x, y) = xy (verify). Thus, the preceding discussion suggests that the work performed

by the field on a particle that moves from the point (0, 0) to the point (1, 1) should be the

same along different paths. Confirm that the value of the work integral
∫

C

F · dr

is the same along the following paths (Figure 16.3.1):

(a) The line segment y = x from (0, 0) to (1, 1).

(b) The parabola y = x2 from (0, 0) to (1, 1).

(c) The cubic y = x3 from (0, 0) to (1, 1).
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Solution (a). With x = t as the parameter, the path of integration is given by

x = t, y = t (0 ≤ t ≤ 1)

Thus,
∫

C

F · dr =
∫

C

(yi + x j) · (dxi + dy j) =
∫

C

y dx + x dy

=
∫ 1

0

2t dt = 1

Solution (b). With x = t as the parameter, the path of integration is given by

x = t, y = t2 (0 ≤ t ≤ 1)

Thus,
∫

C

F · dr =
∫

C

y dx + x dy =
∫ 1

0

3t2 dt = 1

Solution (c). With x = t as the parameter, the path of integration is given by

x = t, y = t3 (0 ≤ t ≤ 1)

Thus,
∫

C

F · dr =
∫

C

y dx + x dy =
∫ 1

0

4t3 dt = 1 ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

THE FUNDAMENTAL THEOREM OF
WORK INTEGRALS

Recall from the Fundamental Theorem of Calculus (Theorem 5.6.1) that ifF is an antideriv-

ative of f , then
∫ b

a

f(x) dx = F(b)− F(a)

The following result is the analog of that theorem for work integrals in 2-space.

16.3.1 THEOREM (The Fundamental Theorem of Work Integrals). Suppose that

F(x, y) = f(x, y)i + g(x, y) j

is a conservative vector field in some open region D containing the points (x0, y0) and

(x1, y1) and that f(x, y) and g(x, y) are continuous in this region. If

F(x, y) = ∇φ(x, y)

and if C is any piecewise smooth parametric curve that starts at (x0, y0), ends at

(x1, y1), and lies in the region D, then

∫

C

F(x, y) · dr = φ(x1, y1)− φ(x0, y0) (3)

or, equivalently,

∫

C

∇φ · dr = φ(x1, y1)− φ(x0, y0) (4)

Proof. We will give the proof for a smooth curve C. The proof for a piecewise smooth

curve, which is left as an exercise, can be obtained by applying the theorem to each individual

smooth piece and adding the results. Suppose that C is given parametrically by x = x(t),

y = y(t) (a ≤ t ≤ b), so that the initial and final points of the curve are

(x0, y0) = (x(a), y(a)) and (x1, y1) = (x(b), y(b))
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Since F(x, y) = ∇φ, it follows that

F(x, y) =
∂φ

∂x
i +

∂φ

∂y
j

so
∫

C

F(x, y) · dr =
∫

C

∂φ

∂x
dx +

∂φ

∂y
dy =

∫ b

a�∂φ∂x dxdt +
∂φ

∂y

dy

dt�dt
=

∫ b

a

d

dt
[φ(x(t), y(t))] dt = φ(x(t), y(t))�bt=a

= φ(x(b), y(b))− φ(x(a), y(a))

= φ(x1, y1)− φ(x0, y0)

Stated informally, this theorem shows that the value of a work integral along a piecewise

smooth path in a conservative vector field is independent of the path; that is, the value of

the integral depends on the endpoints and not on the actual path C. Accordingly, for work

integrals along paths in conservative vector fields, it is common to express (3) and (4) as

∫ (x1,y1)

(x0,y0)

F · dr =
∫ (x1,y1)

(x0,y0)

∇φ · dr = φ(x1, y1)− φ(x0, y0) (5)

Example 2

(a) Confirm that the vector field F(x, y) = yi + x j in Example 1 is conservative by

showing that F(x, y) is the gradient of φ(x, y) = xy.

(b) Use the Fundamental Theorem of Work Integrals to evaluate

∫ (1,1)

(0,0)

F · dr.

Solution (a).

∇φ =
∂φ

∂x
i +

∂φ

∂y
j = yi + x j

Solution (b). From (5) we obtain

∫ (1,1)

(0,0)

F · dr = φ(1, 1)− φ(0, 0) = 1 − 0 = 1

which agrees with the results obtained in Example 1 by integrating from (0, 0) to (1, 1)

along specific paths. ◭

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. You can visualize the result in this example geometrically from the picture of

the vector field shown in Figure 16.3.1 and the relationship
∫

C

F · dr =
∫

C

F · T ds

We see from this that the more closely the unit tangent vector T to C aligns with F along

C, the greater the integrand and hence the greater the value of the integral. However, the

length of the curve C also affects the value of the integral. Thus, in comparing the three

curves in Figure 16.3.1, we see that the alignment of T with F is best for the line, but the

line has the shortest length. The alignments are not as good for y = x2 and y = x3, but

they have greater lengths to compensate. Thus, it seems plausible that the integrals have the

same value.
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

WORK INTEGRALS ALONG CLOSED
PATHS

Parametric curves that begin and end at the same point play an important role in the study

of vector fields, so there is some special terminology associated with them. A parametric

curve C that is represented by the vector-valued function r(t) for a ≤ t ≤ b is said to be

closed if the initial point r(a) and the terminal point r(b) coincide; that is, r(a) = r(b)

(Figure 16.3.2).

x

y

C

r(a) = r(b)

Figure 16.3.2

It follows from (5) that if a particle moving in a conservative vector field traverses a

closed path C that begins and ends at (x0, y0), then the work performed by the field is zero.

This is because the point (x1, y1) in (5) is the same as (x0, y0) and hence
∫

C

F · dr = φ(x1, y1)− φ(x0, y0) = 0

Our next objective is to show that the converse of this result is also true. That is, we want

to show that under appropriate conditions a vector field in which the work is zero along

all closed paths must be conservative. For this to be true we will need to require that the

domainD of the vector field be connected, by which we mean that any two points inD can

be joined by some piecewise smooth curve that lies entirely in D. Stated informally, D is

connected if it does not consist of two or more separate pieces (Figure 16.3.3).

Connected

Not connected

D

D

Figure 16.3.3

16.3.2 THEOREM. If f(x, y) and g(x, y) are continuous on some open connected

region D, then the following statements are equivalent (all true or all false):

(a) F(x, y) = f(x, y)i + g(x, y) j is a conservative vector field on the region D.

(b)

∫

C

F · dr = 0 for every piecewise smooth closed curve C in D.

(c)

∫

C

F · dr is independent of the path from any point P inD to any pointQ inD for

every piecewise smooth curve C in D.

This theorem can be established by proving three implications: (a) ⇒ (b), (b) ⇒ (c),

and (c) ⇒ (a). Since we showed above that (a) ⇒ (b), we need only prove the last two

implications. We will prove (c) ⇒ (a) and leave the other implication as an exercise.

(x, y)(x1, y)
C2

(a, b)

D
C1

x

y

Figure 16.3.4

Proof. (c) ⇒ (a). We are assuming that
∫

C
F · dr is independent of the path for every

piecewise smooth curve C in the region, and we want to show that there is a function

φ = φ(x, y) such that ∇φ = F(x, y) at each point of the region; that is,

∂φ

∂x
= f(x, y) and

∂φ

∂y
= g(x, y) (6)

Now choose a fixed point (a, b) in D, let (x, y) be any point in D, and define

φ(x, y) =
∫ (x,y)

(a,b)

F · dr (7)

This is an unambiguous definition because we have assumed that the integral is independent

of the path. We will show that ∇φ = F. SinceD is open, we can find a circular disk centered

at (x, y)whose points lie entirely inD. As shown in Figure 16.3.4, choose any point (x1, y)

in this disk that lies on the same horizontal line as (x, y) such that x1 < x. Because the

integral in (7) is independent of path, we can evaluate it by first integrating from (a, b) to

(x1, y) along an arbitrary piecewise smooth curve C1 in D, and then continuing along the

horizontal line segment C2 from (x1, y) to (x, y). This yields

φ(x, y) =
∫

C1

F · dr +
∫

C2

F · dr =
∫ (x1,y)

(a,b)

F · dr +
∫

C2

F · dr

Since the first term does not depend on x, its partial derivative with respect to x is zero and
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hence
∂φ

∂x
=
∂

∂x

∫

C2

F · dr =
∂

∂x

∫

C2

f(x, y) dx + g(x, y) dy

However, the line integral with respect to y is zero along the horizontal line segment C2, so

this equation simplifies to

∂φ

∂x
=
∂

∂x

∫

C2

f(x, y) dx (8)

To evaluate the integral in this expression, we treat y as a constant and express the line C2

parametrically as

x = t, y = y (x1 ≤ t ≤ x)

At the risk of confusion, but to avoid complicating the notation, we have used x both as

the dependent variable in the parametric equations and as the endpoint of the line segment.

With the latter interpretation of x, it follows that (8) can be expressed as

∂φ

∂x
=
∂

∂x

∫ x

x1

f(t, y) dt

Now we apply Part 2 of the Fundamental Theorem of Calculus (Theorem 5.6.3), treating y

as constant. This yields

∂φ

∂x
= f(x, y)

which proves the first part of (6). The proof that ∂φ/∂y = g(x, y) can be obtained in a similar

manner by joining (x, y) to a point (x, y1)with a vertical line segment (Exercise 33).

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

A TEST FOR CONSERVATIVE
VECTOR FIELDS

Although Theorem 16.3.2 is an important characterization of conservative vector fields,

it is not an effective computational tool because it is usually not possible to evaluate the

work integral over all possible piecewise smooth curves in D, as required in parts (b) and

(c). To develop a method for determining whether a vector field is conservative, we will

need to introduce some new concepts about parametric curves and connected sets. We will

say that a parametric curve is simple if it does not intersect itself between its endpoints.

A simple parametric curve may or may not be closed (Figure 16.3.5). In addition, we will

say that a connected set D in 2-space is simply connected if no simple closed curve in D

encloses points that are not inD. Stated informally, a connected setD is simply connected

if it has no holes; a connected set with one or more holes is said to be multiply connected

(Figure 16.3.6).

r(a)
r(a) = r(b)

r(b)

r(b) r(a) r(a) = r(b)

Not simple and

not closed

Closed but

not simple

Simple but

not closed

Simple and

closed

Figure 16.3.5

Simply

connected

Multiply

connected

Figure 16.3.6

The following theorem is the primary tool for determining whether a vector field in

2-space is conservative.

16.3.3 THEOREM (Conservative Field Test). If f(x, y) and g(x, y) are continuous and

have continuous first partial derivatives on some open region D, and if F(x, y) =
f(x, y)i + g(x, y) j is a conservative vector field on D, then

∂f

∂y
=
∂g

∂x
(9)

at each point in D. Conversely, if D is simply connected and (9) holds at each point in

D, then F(x, y) = f(x, y)i + g(x, y) j is conservative.
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A complete proof of this theorem requires results from advanced calculus and will be

omitted. However, it is not hard to see why (9) must hold if F is conservative. For this

purpose suppose that F = ∇φ, in which case we can express the functions f and g as

∂φ

∂x
= f and

∂φ

∂y
= g (10)

Thus,

∂f

∂y
=
∂

∂y

(

∂φ

∂x

)

=
∂2φ

∂y∂x
and

∂g

∂x
=
∂

∂x

(

∂φ

∂y

)

=
∂2φ

∂x∂y

But the mixed partial derivatives in these equations are equal (Theorem 14.3.2), so (9)

follows.

•
•
•
•
•
•
•
•

WARNING. In (9), the i-component of F is differentiated with respect to y and the j-

component with respect to x. It is easy to get this backwards by mistake.

Example 3 Use Theorem 16.3.3 to determine whether the vector field

F(x, y) = (y + x)i + (y − x) j

is conservative on some open set.

Solution. Let f(x, y) = y + x and g(x, y) = y − x. Then

∂f

∂y
= 1 and

∂g

∂x
= −1

Thus, there are no points in the xy-plane at which condition (9) holds, and hence F is not

conservative on any open set. ◭

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Since the vector field F in this example is not conservative, it follows from The-

orem 16.3.2 that there must exist piecewise smooth closed curves in every open connected

set in the xy-plane on which
∫

C

F · dr =
∫

C

F · T ds 
= 0

One such curve is the circle shown in Figure 16.3.7. The figure suggests that F · T < 0 at

each point of C (why?), so
∫

C
F · T ds < 0.

–2 –1 0 1 2

–2

–1

0

1

2

F(x, y) = (y + x)i + (y – x)j

Vectors not to scale

Figure 16.3.7

Once it is established that a vector field is conservative, a potential function for the field

can be obtained by first integrating either of the equations in (10). This is illustrated in the

following example.

Example 4 Let F(x, y) = 2xy3i + (1 + 3x2y2) j.

(a) Show that F is a conservative vector field on the entire xy-plane.

(b) Find φ by first integrating ∂φ/∂x.

(c) Find φ by first integrating ∂φ/∂y.

Solution (a). Since f(x, y) = 2xy3 and g(x, y) = 1 + 3x2y2, we have

∂f

∂y
= 6xy2 =

∂g

∂x

so (9) holds for all (x, y).

Solution (b). Since the field F is conservative, there is a potential function φ such that

∂φ

∂x
= 2xy3 and

∂φ

∂y
= 1 + 3x2y2 (11)

Integrating the first of these equations with respect to x (and treating y as a constant) yields

φ =
∫

2xy3 dx = x2y3 + k(y) (12)
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where k(y) represents the “constant” of integration. We are justified in treating the constant

of integration as a function of y, since y is held constant in the integration process. To find

k(y) we differentiate (12) with respect to y and use the second equation in (11) to obtain

∂φ

∂y
= 3x2y2 + k′(y) = 1 + 3x2y2

from which it follows that k′(y) = 1. Thus,

k(y) =
∫

k′(y) dy =
∫

1 dy = y +K

where K is a (numerical) constant of integration. Substituting in (12) we obtain

φ = x2y3 + y +K

The appearance of the arbitrary constant K tells us that φ is not unique. As a check on the

computations, you may want to verify that ∇φ = F.

Solution (c). Integrating the second equation in (11) with respect to y (and treating x as

a constant) yields

φ =
∫

(1 + 3x2y2) dy = y + x2y3 + k(x) (13)

where k(x) is the “constant” of integration. Differentiating (13) with respect to x and using

the first equation in (11) yields

∂φ

∂x
= 2xy3 + k′(x) = 2xy3

from which it follows that k′(x) = 0 and consequently that k(x) = K , where K is a

numerical constant of integration. Substituting this in (13) yields

φ = y + x2y3 +K

which agrees with the solution in part (b). ◭

Example 5 Use the potential function obtained in Example 4 to evaluate the integral
∫ (3,1)

(1,4)

2xy3 dx + (1 + 3x2y2) dy

Solution. The integrand can be expressed as F · dr, where F is the vector field in Example

4. Thus, using Formula (3) and the potential function φ = y + x2y3 +K for F, we obtain
∫ (3,1)

(1,4)

2xy3 dx + (1 + 3x2y2) dy =
∫ (3,1)

(1,4)

F · dr = φ(3, 1)− φ(1, 4)

= (10 +K)− (68 +K) = −58 ◭

•
•
•
•
•
•
•
•

REMARK. Note that the constant K drops out. In future integration problems we may

omit K from the computations.

Example 6 Let F(x, y) = ey i + xey j.

(a) Verify that the vector field F is conservative on the entire xy-plane.

(b) Find the work done by the field on a particle that moves from (1, 0) to (−1, 0) along

the semicircular path C shown in Figure 16.3.8.

–1 0 1
0

1

Vectors not to scale

Figure 16.3.8

Solution (a). For the given field we have f(x, y) = ey and g(x, y) = xey . Thus,

∂

∂y
(ey) = ey =

∂

∂x
(xey)

so (9) holds for all (x, y) and hence F is conservative on the entire xy-plane.
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Solution (b). From Formula (33) of Section 16.2, the work done by the field is

W =
∫

C

F · dr =
∫

C

ey dx + xey dy (14)

However, the calculations involved in integrating along C are tedious, so it is preferable to

apply Theorem 16.3.1, taking advantage of the fact that the field is conservative and the

integral is independent of path. Thus, we write (14) as

W =
∫ (−1,0)

(1,0)

ey dx + xey dy = φ(−1, 0)− φ(1, 0) (15)

As illustrated in Example 4, we can find φ by integrating either of the equations

∂φ

∂x
= ey and

∂φ

∂y
= xey (16)

We will integrate the first. We obtain

φ =
∫

ey dx = xey + k(y) (17)

Differentiating this equation with respect to y and using the second equation in (16) yields

∂φ

∂y
= xey + k′(y) = xey

from which it follows that k′(y) = 0 or k(y) = K . Thus, from (17)

φ = xey +K

and hence from (15)

W = φ(−1, 0)− φ(1, 0) = (−1)e0 − 1e0 = −2 ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

CONSERVATIVE VECTOR FIELDS IN
3-SPACE

All of the results in this section have analogs in 3-space: Theorems 16.3.1 and 16.3.2 can

be extended to vector fields in 3-space simply by adding a third variable and modifying the

hypotheses appropriately. For example, in 3-space, Formula (3) becomes

∫

C

F(x, y, z) · dr = φ(x1, y1, z1)− φ(x0, y0, z0) (18)

Theorem 16.3.3 can also be extended to vector fields in 3-space. We leave it for the exer-

cises to show that if F(x, y, z) = f(x, y, z)i + g(x, y, z) j + h(x, y, z)k is a conservative

field, then

∂f

∂y
=
∂g

∂x
,

∂f

∂z
=
∂h

∂x
,

∂g

∂z
=
∂h

∂y
(19)

that is, curl F = 0. Conversely, a vector field satisfying these conditions on a suitably

restricted region is conservative on that region if f , g, and h are continuous and have

continuous first partial derivatives in the region. Some problems involving Formulas (18)

and (19) are given in the supplementary exercises at the end of this chapter.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

CONSERVATION OF ENERGY
If F(x,y,z) is a conservative force field with a potential function φ(x,y,z), then we call

V (x, y, z) = −φ(x, y, z) the potential energy of the field at the point (x, y, z). Thus, it

follows from the 3-space version of Theorem 16.3.1 that the work W done by F on a

particle that moves along any path C from a point (x0, y0, z0) to a point (x1, y1, z1) is

related to the potential energy by the equation

W =
∫

C

F · dr = φ(x1, y1, z1)− φ(x0, y0, z0) = −[V (x1, y1, z1)− V (x0, y0, z0)] (20)

That is, the work done by the field is the negative of the change in potential energy. In
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particular, it follows from the 3-space analog of Theorem 16.3.2 that if a particle traverses a

piecewise smooth closed path in a conservative vector field, then the work done by the field

is zero, and there is no change in potential energy. To take this a step further, suppose that

a particle of massmmoves along any piecewise smooth curve (not necessarily closed) in a

conservative vector field, starting at (x0, y0, z0) with velocity vi and ending at (x1, y1, z1)

with velocity vf . If we let Vi denote the potential energy at the starting point and Vf
the potential energy at the final point, then it follows from the work–energy relationship

[Equation (5), Section 6.6] that

1
2
mv2

f − 1
2
mv2

i = −[Vf − Vi]

which we can rewrite as

1
2
mv2

f + Vf = 1
2
mv2

i + Vi

This equation states that the total energy of the particle (kinetic energy + potential energy)

does not change as the particle moves along a path in a conservative vector field. This result,

called the conservation of energy principle, explains the origin of the term “conservative

vector field.”

EXERCISE SET 16.3 C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1–6, determine whether F is a conservative vec-

tor field. If so, find a potential function for it.

1. F(x, y) = xi + y j 2. F(x, y) = 3y2i + 6xy j

3. F(x, y) = x2yi + 5xy2 j

4. F(x, y) = ex cos yi − ex sin y j

5. F(x, y) = (cos y + y cos x)i + (sin x − x sin y) j

6. F(x, y) = x ln yi + y ln x j

7. (a) Show that the line integral
∫

C
y2 dx + 2xy dy is inde-

pendent of the path.

(b) Evaluate the integral in part (a) along the line segment

from (−1, 2) to (1, 3).

(c) Evaluate the integral
∫ (1,3)

(−1,2)
y2 dx+ 2xy dy using The-

orem 16.3.1, and confirm that the value is the same as

that obtained in part (b).

8. (a) Show that the line integral
∫

C
y sin x dx − cos x dy is

independent of the path.

(b) Evaluate the integral in part (a) along the line segment

from (0, 1) to (π,−1).

(c) Evaluate the integral
∫ (π,−1)

(0,1)
y sin x dx−cos x dy using

Theorem 16.3.1, and confirm that the value is the same

as that obtained in part (b).

In Exercises 9–14, show that the integral is independent of

the path, and use Theorem 16.3.1 to find its value.

9.

∫ (4,0)

(1,2)

3y dx + 3x dy

10.

∫ (1,π/2)

(0,0)

ex sin y dx + ex cos y dy

11.

∫ (3,2)

(0,0)

2xey dx + x2ey dy

12.

∫ (0,1)

(−1,2)

(3x − y + 1) dx − (x + 4y + 2) dy

13.

∫ (−1,0)

(2,−2)

2xy3 dx + 3y2x2 dy

14.

∫ (3,3)

(1,1)

(

ex ln y −
ey

x

)

dx +
(

ex

y
− ey ln x

)

dy, where x

and y are positive.

In Exercises 15–18, confirm that the force field F is conser-

vative in some open connected region containing the points

P andQ, and then find the work done by the force field on a

particle moving along an arbitrary smooth curve in the region

from P to Q.

15. F(x, y) = xy2i + x2y j; P(1, 1),Q(0, 0)

16. F(x, y) = 2xy3i + 3x2y2 j;P(−3, 0),Q(4, 1)

17. F(x, y) = yexy i + xexy j; P(−1, 1),Q(2, 0)

18. F(x, y) = e−y cos xi−e−y sin x j; P(π/2, 1),Q(−π/2, 0)

In Exercises 19 and 20, find the exact value of
∫

C
F · dr using

any method.

19. F(x, y) = (ey + yex)i + (xey + ex) j

C : r(t) = sin(πt/2)i + ln t j (1 ≤ t ≤ 2)

20. F(x, y) = 2xyi + (x2 + cos y) j

C: r(t) = t i + t cos(t/3) j (0 ≤ t ≤ π)

C 21. Use the numerical integration capability of a CAS or other

calculating utility to approximate the value of the integral in

Exercise 19 by direct integration. Confirm that the numeri-

cal approximation is consistent with the exact value.
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C 22. Use the numerical integration capability of a CAS or other

calculating utility to approximate the value of the integral in

Exercise 20 by direct integration. Confirm that the numeri-

cal approximation is consistent with the exact value.

In Exercises 23 and 24, is the vector field conservative? Ex-

plain your reasoning.

23.

x

y 24.

x

y

25. Prove: If F(x, y, z) = f(x, y, z)i + g(x, y, z) j + h(x, y, z)k

is a conservative field and f , g, and h are continuous and

have continuous first partial derivatives in a region, then

∂f

∂y
=
∂g

∂x
,

∂f

∂z
=
∂h

∂x
,

∂g

∂z
=
∂h

∂y

in the region.

26. Use the result in Exercise 25 to show that the integral
∫

C

yz dx + xz dy + yx2 dz

is not independent of the path.

27. Find a nonzero function h for which

F(x, y) = h(x)[x sin y + y cos y]i

+ h(x)[x cos y − y sin y] j

is conservative.

28. (a) In Example 3 of Section 16.1 we showed that

φ(x, y) = −
c

(x2 + y2)1/2

is a potential function for the two-dimensional inverse-

square field

F(x, y) =
c

(x2 + y2)3/2
(xi + y j)

but we did not explain how the potential function

φ(x, y)was obtained. Use Theorem 16.3.3 to show that

the two-dimensional inverse-square field is conserva-

tive everywhere except at the origin, and then use the

method of Example 4 to derive the formula for φ(x, y).

(b) Use an appropriate generalization of the method of Ex-

ample 4 to derive the potential function

φ(x, y, z) = −
c

(x2 + y2 + z2)1/2

for the three-dimensional inverse-square field given by

Formula (5) of Section 16.1.

In Exercises 29 and 30, use the result in Exercise 28(b).

29. In each part, find the work done by the three-dimensional

inverse-square field

F(r) =
1

‖r‖3
r

on a particle that moves along the curve C.

(a) C is the line segment from P(1, 1, 2) to Q(3, 2, 1).

(b) C is the curve r(t) = (2t2 +1)i+(t3 +1) j+(2−
√
t)k,

where 0 ≤ t ≤ 1.

(c) C is the circle in the xy-plane of radius 1 centered at

(2, 0, 0) traversed counterclockwise.

30. Let F(x, y) =
y

x2 + y2
i −

x

x2 + y2
j.

(a) Show that

∫

C1

F · dr 
=
∫

C2

F · dr

if C1 and C2 are the semicircular paths from (1, 0) to

(−1, 0) given by

C1: x = cos t, y = sin t (0 ≤ t ≤ π)

C2: x = cos t, y = − sin t (0 ≤ t ≤ π)

(b) Show that the components of F satisfy Formula (9).

(c) Do the results in parts (a) and (b) violate Theorem

16.3.3? Explain.

31. Prove Theorem 16.3.1 if C is a piecewise smooth curve

composed of smooth curves C1, C2, . . . , Cn.

32. Prove that (b) implies (c) in Theorem 16.3.2. [Hint: Con-

sider any two piecewise smooth oriented curves C1 and C2

in the region from a point P to a point Q, and integrate

around the closed curve consisting of C1 and −C2.]

33. Complete the proof of Theorem 16.3.2 by showing that

∂φ/∂y = g(x, y), where φ(x, y) is the function in (7).
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16.4 GREEN’S THEOREM

In this section we will discuss a remarkable and beautiful theorem that expresses a

double integral over a plane region in terms of a line integral around its boundary.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

GREEN’S THEOREM 16.4.1 THEOREM (Green’s
∗

Theorem). LetR be a simply connected plane region whose

boundary is a simple, closed, piecewise smooth curve C oriented counterclockwise. If

f(x, y) and g(x, y) are continuous and have continuous first partial derivatives on some

open set containing R, then

∫

C

f(x, y) dx + g(x, y) dy =
∫∫

R

(

∂g

∂x
−
∂f

∂y

)

dA (1)

Proof. For simplicity, we will prove the theorem for regions that are simultaneously type

I and type II (see Definition 15.2.1). Such a region is shown in Figure 16.4.1. The crux of

the proof is to show that
∫

C

f(x, y) dx = −
∫∫

R

∂f

∂y
dA and

∫

C

g(x, y) dy =
∫∫

R

∂g

∂x
dA (2–3)

x

y

C

R

x

y

R

x

y

R

g2(x)

g1(x)

h1(y)

h2(y)

ba

d

c

R viewed as a type I region R viewed as a type II region

Figure 16.4.1

x

y

R

C2

C1

ba

Figure 16.4.2

To prove (2), viewR as a type I region and letC1 andC2 be the lower and upper boundary

curves, oriented as in Figure 16.4.2. Then
∫

C

f(x, y) dx =
∫

C1

f(x, y) dx +
∫

C2

f(x, y) dx

or, equivalently,
∫

C

f(x, y) dx =
∫

C1

f(x, y) dx −
∫

−C2

f(x, y) dx (4)

∗
GEORGE GREEN (1793–1841). English mathematician and physicist. Green left school at an early age to work

in his father’s bakery and consequently had little early formal education. When his father opened a mill, the

boy used the top room as a study in which he taught himself physics and mathematics from library books.

In 1828 Green published his most important work, An Essay on the Application of Mathematical Analysis to

the Theories of Electricity and Magnetism. Although Green’s Theorem appeared in that paper, the result went

virtually unnoticed because of the small pressrun and local distribution. Following the death of his father in 1829,

Green was urged by friends to seek a college education. In 1833, after four years of self-study to close the gaps

in his elementary education, Green was admitted to Caius College, Cambridge. He graduated four years later, but

with a disappointing performance on his final examinations—possibly because he was more interested in his own

research. After a succession of works on light and sound, he was named to be Perse Fellow at Caius College. Two

years later he died. In 1845, four years after his death, his paper of 1828 was published and the theories developed

therein by this obscure, self-taught baker’s son helped pave the way to the modern theories of electricity and

magnetism.
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(This step will help simplify our calculations since C1 and −C2 are then both oriented left

to right.) The curves C1 and −C2 can be expressed parametrically as

C1 : x = t, y = g1(t) (a ≤ t ≤ b)

−C2 : x = t, y = g2(t) (a ≤ t ≤ b)

Thus, we can rewrite (4) as
∫

C

f(x, y) dx =
∫ b

a

f(t, g1(t))x
′(t) dt −

∫ b

a

f(t, g2(t))x
′(t) dt

=
∫ b

a

f(t, g1(t)) dt −
∫ b

a

f(t, g2(t)) dt

= −
∫ b

a

[f(t, g2(t))− f(t, g1(t))] dt

= −
∫ b

a

[

f(t, y)

]y=g2(t)

y=g1(t)

dt = −
∫ b

a

[∫ g2(t)

g1(t)

∂f

∂y
dy

]

dt

= −
∫ b

a

∫ g2(x)

g1(x)

∂f

∂y
dy dx = −

∫∫

R

∂f

∂y
dA

Since x = t

The proof of (3) is obtained similarly by treating R as a type II region. We omit the

details.

Example 1 Use Green’s Theorem to evaluate
∫

C

x2y dx + x dy

along the triangular path shown in Figure 16.4.3.

x

y
(1, 2)

1

Figure 16.4.3

Solution. Since f(x, y) = x2y and g(x, y) = x, it follows from (1) that
∫

C

x2y dx + x dy =
∫∫

R

[

∂

∂x
(x)−

∂

∂y
(x2y)

]

dA =
∫ 1

0

∫ 2x

0

(1 − x2) dy dx

=
∫ 1

0

(2x − 2x3) dx =
[

x2 −
x4

2

]1

0

=
1

2

This agrees with the result obtained in Example 7 of Section 16.2, where we evaluated the

line integral directly. Note how much simpler this solution is. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

A NOTATION FOR LINE INTEGRALS
AROUND SIMPLE CLOSED CURVES

It is common practice to denote a line integral around a simple closed curve by an integral

sign with a superimposed circle. With this notation Formula (1) would be written as
∮

C

f(x, y) dx + g(x, y) dy =
∫∫

R

(

∂g

∂x
−
∂f

∂y

)

dA

Sometimes a direction arrow is added to the circle to indicate whether the integration is

clockwise or counterclockwise. Thus, if we wanted to emphasize the counterclockwise

direction of integration required by Theorem 16.4.1, we could express (1) as
∮

C

f(x, y) dx + g(x, y) dy =
∫∫

R

(

∂g

∂x
−
∂f

∂y

)

dA (5)
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

FINDING WORK USING GREEN’S
THEOREM

It follows from Formula (37) of Section 16.2 that the integral on the left side of (5) is the

work performed by the vector field F(x, y) = f(x, y)i + g(x, y) j on a particle moving

counterclockwise around the simple closed curve C. In the case where this vector field is

conservative, it follows from Theorem 16.3.2 that the integrand in the double integral on

the right side of (5) is zero, so the work performed by the field is zero, as expected. For

vector fields that are not conservative, it is often more efficient to calculate the work around

simple closed curves by using Green’s Theorem than by parametrizing the curve.

Example 2 Find the work done by the force field

F(x, y) = (ex − y3)i + (cos y + x3) j

on a particle that travels once around the unit circle x2 + y2 = 1 in the counterclockwise

direction (Figure 16.4.4).

-1 0 1

-1

0

1

Figure 16.4.4

Solution. The work W performed by the field is

W =
∮

C

F · dr =
∮

C

(ex − y3) dx + (cos y + x3) dy

=��
R

�
∂

∂x
(cos y + x3)−

∂

∂y
(ex − y3)

�
dA Green’s Theorem

=��
R

(3x2 + 3y2) dA = 3��
R

(x2 + y2) dA

= 3�2π
0

�1
0

(r2)r dr dθ =
3

4
�2π

0

dθ =
3π

2
◭

We converted to

polar coordinates.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

FINDING AREAS USING GREEN’S
THEOREM

Green’s Theorem leads to some useful new formulas for the area A of a region R that

satisfies the conditions of the theorem. Two such formulas can be obtained as follows:

A =��
R

dA =
∮

C

x dy and A =��
R

dA =
∮

C

(−y) dx

Set f(x, y) = 0 and

g(x, y) = x in (1).

Set f(x, y) = −y and

g(x, y) = 0 in (1).

A third formula can be obtained by adding these two equations together. Thus, we have the

following three formulas that express the area A of a region R in terms of line integrals

around the boundary:

A =
∮

C

x dy = −
∮

C

y dx =
1

2

∮

C

− y dx + x dy (6)

•
•
•
•
•
•
•
•

REMARK. Although the third formula in (6) looks more complicated than the other two,

it often leads to simpler integrations; but each has advantages in certain situations.

Example 3 Use a line integral to find the area enclosed by the ellipse

x2

a2
+
y2

b2
= 1

Solution. The ellipse, with counterclockwise orientation, can be represented parametri-

cally by

x = a cos t, y = b sin t (0 ≤ t ≤ 2π)
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If we denote this curve by C, then from the third formula in (6) the area A enclosed by the

ellipse is

A =
1

2

∮

C

−y dx + x dy

=
1

2�2π0

[(−b sin t)(−a sin t)+ (a cos t)(b cos t)] dt

=
1

2
ab�2π0

(sin2 t + cos2 t) dt =
1

2
ab�2π0

dt = πab ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

GREEN’S THEOREM FOR MULTIPLY
CONNECTED REGIONS

Recall that a plane region is said to be simply connected if it has no holes and is said to be

multiply connected if it has one or more holes (see Figure 16.3.6). At the beginning of this

section we stated Green’s Theorem for a counterclockwise integration around the boundary

of a simply connected regionR (Theorem 16.4.1). Our next goal is to extend this theorem to

multiply connected regions. To make this extension we will need to assume that the region

lies on the left when any portion of the boundary is traversed in the direction of its orientation.

This implies that the outer boundary curve of the region is oriented counterclockwise and

the boundary curves that enclose holes have clockwise orientation (Figure 16.4.5a). If all

portions of the boundary of a multiply connected region R are oriented in this way, then we

say that the boundary of R has positive orientation.

R

(a)

R¢

(b)

R¢¢

C2

C1

C1

C2

Figure 16.4.5

We will now derive a version of Green’s Theorem that applies to multiply connected

regions with positively oriented boundaries. For simplicity, we will consider a multiply

connected region R with one hole, and we will assume that f(x, y) and g(x, y) have con-

tinuous first partial derivatives on some open set containingR. As shown in Figure 16.4.5b,

let us divide R into two regions R′ and R′′ by introducing two “cuts” in R. The cuts are

shown as line segments, but any piecewise smooth curves will suffice. If we assume that f

and g satisfy the hypotheses of Green’s Theorem on R (and hence on R′ and R′′), then we

can apply this theorem to both R′ and R′′ to obtain��
R

�
∂g

∂x
−
∂f

∂y�dA =��
R′

�
∂g

∂x
−
∂f

∂y�dA+��
R′′

�
∂g

∂x
−
∂f

∂y�dA
=

∮

Boundary

of R′

f(x, y) dx + g(x, y) dy +
∮

Boundary

of R′′

f(x, y) dx + g(x, y) dy

However, the two line integrals are taken in opposite directions along the cuts, and hence

cancel there, leaving only the contributions along C1 and C2. Thus,��
R�∂g∂x −

∂f

∂y�dA =
∮

C1

f(x, y) dx + g(x, y) dy +
∮

C2

f(x, y) dx + g(x, y) dy (7)

which is an extension of Green’s Theorem to a multiply connected region with one hole. Ob-

serve that the integral around the outer boundary is taken counterclockwise and the integral

around the hole is taken clockwise. More generally, ifR is a multiply connected region with

n holes, then the analog of (7) involves a sum of n+1 integrals, one taken counterclockwise

around the outer boundary of R and the rest taken clockwise around the holes.

Example 4 Evaluate the integral
∮

C

−y dx + x dy

x2 + y2

if C is a piecewise smooth simple closed curve oriented counterclockwise such that (a) C

does not enclose the origin and (b) C encloses the origin.
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Solution (a). Let

f(x, y) = −
y

x2 + y2
, g(x, y) =

x

x2 + y2
(8)

so that

∂g

∂x
=

y2 − x2

(x2 + y2)2
=
∂f

∂y

if x and y are not both zero. Thus, if C does not enclose the origin, we have

∂g

∂x
−
∂f

∂y
= 0 (9)

on the simply connected region enclosed by C, and hence the given integral is zero by

Green’s Theorem.

Solution (b). Unlike the situation in part (a), we cannot apply Green’s Theorem directly

because the functionsf(x, y) andg(x, y) in (8) are discontinuous at the origin. Our problems

are further compounded by the fact that we do not have a specific curve C that we can

parametrize to evaluate the integral. Our strategy circumventing these problems will be to

replace C with a specific curve that produces the same value for the integral and then use

that curve for the evaluation. To obtain such a curve, we will apply Green’s Theorem for

multiply connected regions to a region that does not contain the origin. For this purpose we

construct a circleCa with clockwise orientation, centered at the origin, and with sufficiently

small radius a that it lies inside the region enclosed by C (Figure 16.4.6). This creates

a multiply connected region R whose boundary curves C and Ca have the orientations

required by Formula (7) and such that within R the functions f(x, y) and g(x, y) in (8)

satisfy the hypotheses of Green’s Theorem (the origin is outside of R). Thus, it follows

from (7) and (9) that
∮

C

−y dx + x dy

x2 + y2
+

∮

Ca

−y dx + x dy

x2 + y2
=��

R

0 dA = 0

It follows from this equation that
∮

C

−y dx + x dy

x2 + y2
= −

∮

Ca

−y dx + x dy

x2 + y2

which we can rewrite as
∮

C

−y dx + x dy

x2 + y2
=

∮

−Ca

−y dx + x dy

x2 + y2

Reversing the orientation

of Ca reverses the sign of

the integral.

But Ca has clockwise orientation, so −Ca has counterclockwise orientation. Thus, we have

shown that the original integral can be evaluated by integrating counterclockwise around

a circle of radius a that is centered at the origin and lies within the region enclosed by C.

Such a circle can be expressed parametrically as x = a cos t , y = a sin t (0 ≤ t ≤ 2π); and

hence
∮

C

−y dx + x dy

x2 + y2
=�2π

0

(−a sin t)(−a sin t) dt + (a cos t)(a cos t) dt

(a cos t)2 + (a sin t)2

=�2π
0

1 dt = 2π ◭

Ca

C

R

x

y

Figure 16.4.6

EXERCISE SET 16.4 C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1 and 2, evaluate the line integral using Green’s

Theorem and check the answer by evaluating it directly.

1.

∮

C

y2 dx+x2 dy, whereC is the square with vertices (0, 0),

(1, 0), (1, 1), and (0, 1) oriented counterclockwise.

2.

∮

C

y dx+x dy, where C is the unit circle oriented counter-

clockwise.

In Exercises 3–13, use Green’s Theorem to evaluate the in-

tegral. In each exercise, assume that the curve C is oriented

counterclockwise.
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3.

∮

C

3xy dx + 2xy dy, where C is the rectangle bounded by

x = −2, x = 4, y = 1, and y = 2.

4.

∮

C

(x2 − y2) dx + x dy, where C is the circle x2 + y2 = 9.

5.

∮

C

x cos y dx − y sin x dy, where C is the square with ver-

tices (0, 0), (π/2, 0), (π/2, π/2), and (0, π/2).

6.

∮

C

y tan2 x dx + tan x dy, where C is the circle

x2 + (y + 1)2 = 1.

7.

∮

C

(x2 − y) dx + x dy, where C is the circle x2 + y2 = 4.

8.

∮

C

(ex + y2) dx + (ey + x2) dy, where C is the boundary

of the region between y = x2 and y = x.

9.

∮

C

ln(1 + y) dx −
xy

1 + y
dy, where C is the triangle with

vertices (0, 0), (2, 0), and (0, 4).

10.

∮

C

x2y dx− y2x dy, where C is the boundary of the region

in the first quadrant, enclosed between the coordinate axes

and the circle x2 + y2 = 16.

11.

∮

C

tan−1 y dx−
y2x

1 + y2
dy, whereC is the square with ver-

tices (0, 0), (1, 0), (1, 1), and (0, 1).

12.

∮

C

cos x sin y dx + sin x cos y dy, where C is the triangle

with vertices (0, 0), (3, 3), and (0, 3).

13.

∮

C

x2y dx + (y + xy2) dy, where C is the boundary of the

region enclosed by y = x2 and x = y2.

14. Let C be the boundary of the region enclosed between

y = x2 and y = 2x. Assuming that C is oriented coun-

terclockwise, evaluate the following integrals by Green’s

Theorem:

(a)

∮

C

(6xy − y2) dx (b)

∮

C

(6xy − y2) dy

C 15. Use a CAS to check Green’s Theorem by evaluating both

integrals in the equation
∮

C

ey dx + yex dy =��
R

�
∂

∂x
(yex)−

∂

∂y
(ey)

�
dA

where

(a) C is the circle x2 + y2 = 1

(b) C is the boundary of the region enclosed by y = x2 and

x = y2.

16. In Example 3, we used Green’s Theorem to obtain the area

of an ellipse. Obtain this area using the first and then the

second formula in (6).

17. Use a line integral to find the area of the region enclosed by

the astroid

x = a cos3 φ, y = a sin3 φ (0 ≤ φ ≤ 2π)

[See Exercise 14 of Section 6.4.]

18. Use a line integral to find the area of the triangle with ver-

tices (0, 0), (a, 0), and (0, b), where a > 0 and b > 0.

19. Use the formula

A =
1

2

∮

C

−y dx + x dy

to find the area of the region swept out by the line from the

origin to the ellipse x = a cos t , y = b sin t if t varies from

t = 0 to t = t0 (0 ≤ t0 ≤ 2π).

20. Use the formula

A =
1

2

∮

C

−y dx + x dy

to find the area of the region swept out by the line from the

origin to the hyperbola x = a cosh t , y = b sinh t if t varies

from t = 0 to t = t0 (t0 ≥ 0).

In Exercises 21 and 22, use Green’s Theorem to find the work

done by the force field F on a particle that moves along the

stated path.

21. F(x, y) = xyi +�1
2
x2 + xy�j; the particle starts at (5, 0),

traverses the upper semicircle x2 + y2 = 25, and returns to

its starting point along the x-axis.

22. F(x, y) = √
y i +

√
x j; the particle moves counterclock-

wise one time around the closed curve given by the equations

y = 0, x = 2, and y = x3/4.

23. Evaluate

∮

C

y dx − x dy, where C is the cardioid

r = a(1 + cos θ) (0 ≤ θ ≤ 2π)

24. Let R be a plane region with area A whose boundary is a

piecewise smooth simple closed curveC. Use Green’s The-

orem to prove that the centroid (x̄, ȳ) of R is given by

x̄ =
1

2A

∮

C

x2 dy, ȳ = −
1

2A

∮

C

y2 dx

In Exercises 25–28, use the result in Exercise 24 to find the

centroid of the region.

25.

1

1

x

y

y = x3

y = x

26.

a

a

x

y

27.

x

y

–a a

a

28.

x

y

(a, b)
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29. Find a simple closed curve C with counterclockwise orien-

tation that maximizes the value of
∮

C

1
3
y3 dx +�x − 1

3
x3�dy

and explain your reasoning.

30. (a) Let C be the line segment from a point (a, b) to a point

(c, d). Show that�
C

−y dx + x dy = ad − bc

(b) Use the result in part (a) to show that the area A of a

triangle with successive vertices (x1, y1), (x2, y2), and

(x3, y3) going counterclockwise is

A = 1
2
[(x1y2 − x2y1)

+ (x2y3 − x3y2)+ (x3y1 − x1y3)]

(c) Find a formula for the area of a polygon with successive

vertices (x1, y1), (x2, y2), . . . , (xn, yn) going counter-

clockwise.

(d) Use the result in part (c) to find the area of a quadrilat-

eral with vertices (0, 0), (3, 4), (−2, 2), (−1, 0).

In Exercises 31 and 32, evaluate the integral�
C

F · dr,where

C is the boundary of the region R and C is oriented so that

the region is on the left when the boundary is traversed in the

direction of its orientation.

31. F(x, y) = (x2 + y)i + (4x − cos y) j; C is the boundary of

the region R that is inside the square with vertices (0, 0),

(5, 0), (5, 5), (0, 5) but is outside the rectangle with vertices

(1, 1), (3, 1), (3, 2), (1, 2).

32. F(x, y) = (e−x + 3y)i + xj;C is the boundary of the region

R between the circles x2 + y2 = 16 and x2 − 2x + y2 = 3.

16.5 SURFACE INTEGRALS

In previous sections we considered four kinds of integrals—integrals over intervals,

double integrals over two-dimensional regions, triple integrals over three-dimensional

solids, and line integrals along curves in two- or three-dimensional space. In this sec-

tion we will discuss integrals over surfaces in three-dimensional space. Such integrals

occur in problems involving fluid and heat flow, electricity, magnetism, mass, and

center of gravity.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DEFINITION OF A SURFACE
INTEGRAL

Recall that if C is a smooth parametric curve in 3-space, and f(x, y, z) is continuous on C,

then the line integral of f along C with respect to arc length is defined by subdividing C

into n arcs and defining the line integral as the limit�
C

f(x, y, z) ds = lim
n→+�

n�
k=1

f(x∗
k , y

∗
k , z

∗
k)�sk

where (x∗
k , y

∗
k , z

∗
k) is a point on the kth arc and �sk is the length of the kth arc. We will

define surface integrals in an analogous manner.

(x*
k, y*

k, z*
k )

Area ∆Sk

s

sk

Figure 16.5.1

Let σ be a surface in 3-space with finite surface area, and let f(x, y, z) be a continuous

function defined on σ . As shown in Figure 16.5.1, subdivide σ into patches, σ1, σ2, . . . , σn
with areas �S1, �S2, . . . , �Sn, and form the sum

n�
k=1

f(x∗
k , y

∗
k , z

∗
k)�Sk (1)

where (x∗
k , y

∗
k , z

∗
k) is an arbitrary point on σk . Now repeat the subdivision process, dividing

σ into more and more patches in such a way that the maximum dimension of each patch

approaches zero as n→+�. If (1) approaches a limit that does not depend on the way the

subdivisions are made or how the points (x∗
k , y

∗
k , z

∗
k) are chosen, then this limit is called the

surface integral of f(x, y, z) over σ and is denoted by��
σ

f(x, y, z) dS = lim
n→+�

n�
k=1

f(x∗
k , y

∗
k , z

∗
k)�Sk (2)
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

EVALUATING SURFACE INTEGRALS
There are various procedures for evaluating surface integrals that depend on how the surface

σ is represented. The following theorem provides a method for evaluating a surface integral

when σ is represented parametrically.

16.5.1 THEOREM. Let σ be a smooth parametric surface whose vector equation is

r = x(u, v)i + y(u, v) j + z(u, v)k

where (u, v) varies over a region R in the uv-plane. If f(x, y, z) is continuous on σ,

then

∫∫

σ

f(x, y, z) dS =
∫∫

R

f(x(u, v), y(u, v), z(u, v))

∥

∥

∥

∥

∂r

∂u
×
∂r

∂v

∥

∥

∥

∥

dA (3)

To motivate this result, suppose that the parameter domain R is subdivided as in Fig-

ure 15.4.10, and suppose that the point (x∗
k , y

∗
k , z

∗
k) in (2) corresponds to parameter values

of u∗
k and v∗

k . If we use Formula (9) of Section 15.4 to approximate �Sk , and if we assume

that the errors in the approximations approach zero as n→+�, then it follows from (2) that
∫∫

σ

f(x, y, z) dS = lim
n→+�

n
∑

k=1

f(x(u∗
k, v

∗
k ), y(u

∗
k, v

∗
k ), z(u

∗
k, v

∗
k ))

∥

∥

∥

∥

∂r

∂u
×
∂r

∂v

∥

∥

∥

∥

�Ak

which suggests Formula (3).

We will discuss various applications and interpretations of surface integrals later in this

section and in subsequent sections, but for now we will focus on techniques for evaluating

such integrals.

Example 1 Evaluate the surface integral
∫∫

σ

x2 dS over the sphere x2 + y2 + z2 = 1.

Solution. As in Example 9 of Section 15.4 (with a = 1), the sphere is the graph of the

vector-valued function

r(φ, θ) = sinφ cos θ i + sinφ sin θ j + cosφk (0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π) (4)

and
∥

∥

∥

∥

∂r

∂φ
×
∂r

∂θ

∥

∥

∥

∥

= sinφ

From the i-component of r, the integrand in the surface integral can be expressed in terms

of φ and θ as x2 = sin2 φ cos2 θ . Thus, it follows from (3) with φ and θ in place of u and v

and R as the rectangular region in the φθ -plane determined by the inequalities in (4) that
∫∫

σ

x2 dS =
∫∫

R

(sin2 φ cos2 θ)

∥

∥

∥

∥

∂r

∂φ
×
∂r

∂θ

∥

∥

∥

∥

dA

=
∫ 2π

0

∫ π

0

sin3 φ cos2 θ dφ dθ

=
∫ 2π

0

[∫ π

0

sin3 φ dφ

]

cos2 θ dθ

=
∫ 2π

0

[

1

3
cos3 φ − cosφ

]π

0

cos2 θ dθ Formula (11),

Section 8.3

=
4

3

∫ 2π

0

cos2 θ dθ

=
4

3

[

1

2
θ +

1

4
sin 2θ

]2π

0

=
4π

3
Formula (8),

Section 8.3
◭
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

SURFACE INTEGRALS OVER
z = g(x, y ), y = g(x, z), AND
x = g(y, z)

In the case where σ is a surface of the form z = g(x, y), we can take x = u and y = v as

parameters and express the equation of the surface as

r = ui + v j + g(u, v)k

in which case we obtain
∥

∥

∥

∥

∂r

∂u
×
∂r

∂v

∥

∥

∥

∥

=��∂z
∂x�2 +
�
∂z

∂y�2 + 1

[see the derivation of Formula (11) in Section 15.4]. Thus, it follows from (3) that��
σ

f(x, y, z) dS =
��
R

f(x, y, g(x, y))��∂z
∂x�2 +
�
∂z

∂y�2 + 1 dA

Note that in this formula the region R lies in the xy-plane because the parameters are x and

y. Geometrically, this region is the projection of σ on the xy-plane. The following theorem

summarizes this result and gives analogous formulas for surface integrals over surfaces of

the form y = g(x, z) and x = g(y, z).

16.5.2 THEOREM.

(a) Let σ be a surface with equation z = g(x, y) and let R be its projection on the xy-

plane. If g has continuous first partial derivatives onR and f(x, y, z) is continuous

on σ, then��
σ

f(x, y, z) dS =
��
R

f(x, y, g(x, y))��∂z
∂x�2 +
�
∂z

∂y�2 + 1 dA (5)

(b) Let σ be a surface with equation y = g(x, z) and let R be its projection on the xz-

plane. If g has continuous first partial derivatives onR and f(x, y, z) is continuous

on σ, then��
σ

f(x, y, z) dS =
��
R

f(x, g(x, z), z)��∂y
∂x�2 +
�
∂y

∂z�2 + 1 dA (6)

(c) Let σ be a surface with equation x = g(y, z) and let R be its projection on the yz-

plane. If g has continuous first partial derivatives onR and f(x, y, z) is continuous

on σ, then��
σ

f(x, y, z) dS =
��
R

f(g(y, z), y, z)��∂x
∂y�2 +
�
∂x

∂z�2 + 1 dA (7)

Example 2 Evaluate the surface integral��
σ

xz dS

where σ is the part of the plane x + y + z = 1 that lies in the first octant.

Solution. The equation of the plane can be written as

z = 1 − x − y

which is of the form z = g(x, y). Consequently, we can apply Formula (5) with
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z = g(x, y) = 1 − x − y and f(x, y, z) = xz. We have

∂z

∂x
= −1 and

∂z

∂y
= −1

so (5) becomes
∫∫

σ

xz dS =
∫∫

R

x(1 − x − y)
√

(−1)2 + (−1)2 + 1 dA (8)

whereR is the projection of σ on the xy-plane (Figure 16.5.2). Rewriting the double integral

in (8) as an iterated integral yields
∫∫

σ

xz dS =
√

3

∫ 1

0

∫ 1−x

0

(x − x2 − xy) dy dx

=
√

3

∫ 1

0

[

xy − x2y −
xy2

2

]1−x

y=0

dx

=
√

3

∫ 1

0

(

x

2
− x2 +

x3

2

)

dx

=
√

3

[

x2

4
−
x3

3
+
x4

8

]1

0

=
√

3

24
◭

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

x + y + z = 1

y = 1 – x
R

y

x

z

Figure 16.5.2

Example 3 Evaluate the surface integral
∫∫

σ

y2z2 dS

where σ is the part of the cone z =
√

x2 + y2 that lies between the planes z = 1 and z = 2

(Figure 16.5.3).

y

x

z

z = 2

z = 1

1 2

z = √x2 + y2

R

Figure 16.5.3

Solution. We will apply Formula (5) with

z = g(x, y) =
√

x2 + y2 and f(x, y, z) = y2z2

Thus,

∂z

∂x
=

x
√

x2 + y2
and

∂z

∂y
=

y
√

x2 + y2

so
√

(

∂z

∂x

)2

+
(

∂z

∂y

)2

+ 1 =
√

2
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(verify), and (5) yields
∫∫

σ

y2z2 dS =
∫∫

R

y2
(

√

x2 + y2
)2 √

2 dA =
√

2

∫∫

R

y2(x2 + y2) dA

where R is the annulus enclosed between x2 + y2 = 1 and x2 + y2 = 4 (Figure 16.5.3).

Using polar coordinates to evaluate this double integral over the annulus R yields
∫∫

σ

y2z2 dS =
√

2

∫ 2π

0

∫ 2

1

(r sin θ)2(r2)r dr dθ

=
√

2

∫ 2π

0

∫ 2

1

r5 sin2 θ dr dθ

=
√

2

∫ 2π

0

r6

6
sin2 θ

]2

r=1

dθ =
21
√

2

∫ 2π

0

sin2 θ dθ

=
21
√

2

[

1

2
θ −

1

4
sin 2θ

]2π

0

=
21π
√

2

Formula (7),

Section 8.3
◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

MASS OF A CURVED LAMINA AS A
SURFACE INTEGRAL

In Section 15.6 we defined a lamina to be an idealized flat object that is thin enough to be

viewed as a plane region. Analogously, a curved lamina is an idealized object that is thin

enough to be viewed as a surface in 3-space. A curved lamina may look like a bent plate,

as in Figure 16.5.4, or it may enclose a region in 3-space, like the shell of an egg. If the

composition of a curved lamina is uniform so that its mass is distributed uniformly, then it is

said to be homogeneous, and we define its mass density to be the total mass divided by the

total surface area. However, if the mass of the lamina is not uniformly distributed, then this

is not a useful measure, since it does not account for the variations in mass concentration.

In this case we describe the mass concentration at a point by a mass density function δ,

which we view as a limit; that is,

δ = lim
�S→0

�M

�S
(9)

where�M and�S denote the mass and surface area of a small section of lamina containing

the point (Figure 16.5.5).

The thickness of a curved

lamina is negligible.

Figure 16.5.4

(x, y, z)

Figure 16.5.5

To translate this informal idea into a useful formula, suppose that δ = δ(x, y, z) is the

density function of a smooth curved lamina σ. Assume that the lamina is subdivided into n

small sections; let (x∗
k , y

∗
k , z

∗
k) be a point in the kth section, let �Mk be the mass of the kth

section, and let �Sk be the surface area of the kth section. Since we are assuming that the

sections are small, it follows from (9) that the mass of the kth section can be approximated

as

�Mk ≈ δ(x∗
k , y

∗
k , z

∗
k)�Sk

and hence the mass M of the entire lamina can be approximated as

M =
n

∑

k=1

�Mk ≈
n

∑

k=1

δ(x∗
k , y

∗
k , z

∗
k)�Sk (10)

If we now increase n in such a way that the dimensions of the sections approach zero, then

it is plausible that the error in (10) will approach zero, and the exact value of M will be

given by the surface integral

M =
∫∫

σ

δ(x, y, z) dS (11)

y

x

z
z = 1

R

x2 + y2 = 1

z = x2 + y2

Figure 16.5.6

Example 4 Suppose that a curved lamina σ with constant density δ(x, y, z) = δ0 is the

portion of the paraboloid z = x2 + y2 below the plane z = 1 (Figure 16.5.6). Find the mass

of the lamina.
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Solution. Since z = g(x, y) = x2 + y2, it follows that

∂z

∂x
= 2x and

∂z

∂y
= 2y

Substituting these expressions and δ(x, y, z) = δ(x, y, g(x, y)) = δ0 into (11) yields

M =
∫∫

σ

δ0 dS =
∫∫

R

δ0

√

(2x)2 + (2y)2 + 1 dA = δ0

∫∫

R

√

4x2 + 4y2 + 1 dA (12)

where R is the circular region enclosed by x2 + y2 = 1. To evaluate (12) we use polar

coordinates:

M = δ0

∫ 2π

0

∫ 1

0

√

4r2 + 1 r dr dθ =
δ0

12

∫ 2π

0

(4r2 + 1)3
/2

]1

r=0

dθ

=
δ0

12

∫ 2π

0

(53/2 − 1) dθ =
πδ0

6
(5

√
5 − 1) ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

SURFACE AREA AS A SURFACE
INTEGRAL

In the special case where f(x, y, z) is 1, Formula (3) becomes
∫∫

σ

dS =
∫∫

R

∥

∥

∥

∥

∂r

∂u
×
∂r

∂v

∥

∥

∥

∥

dA

However, it follows from Formula (10) of Section 15.4 that this integral represents the

surface area of σ. Thus, we have established the following result.

16.5.3 THEOREM. If σ is a smooth parametric surface in 3-space, then its surface

area S can be expressed as

S =
∫∫

σ

dS (13)

•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. This result adds nothing new computationally, since Formula (13) is just a

reformulation of Formula (10) in Section 15.4. However, the relationship between surface

integrals and surface area is important to understand.

EXERCISE SET 16.5 C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1–10, evaluate the surface integral
∫∫

σ

f(x, y, z) dS

1. f(x, y, z) = z2; σ is the portion of the cone z =
√

x2 + y2

between the planes z = 1 and z = 2.

2. f(x, y, z) = xy; σ is the portion of the plane x+y+z = 1

lying in the first octant.

3. f(x, y, z) = x2y; σ is the portion of the cylinder

x2 + z2 = 1 between the planes y = 0, y = 1, and

above the xy-plane.

4. f(x, y, z) = (x2 + y2)z; σ is the portion of the sphere

x2 + y2 + z2 = 4 above the plane z = 1.

5. f(x, y, z) = x − y − z; σ is the portion of the plane

x + y = 1 in the first octant between z = 0 and z = 1.

6. f(x, y, z) = x + y; σ is the portion of the plane

z = 6 − 2x − 3y in the first octant.

7. f(x, y, z) = x+ y+ z; σ is the surface of the cube defined

by the inequalities 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.

[Hint: Integrate over each face separately.]

8. f(x, y, z) = z+ 1; σ is the upper hemisphere

z =
√

1 − x2 − y2.

9. f(x, y, z) =
√

x2 + y2 + z2; σ is the portion of the cone

z =
√

x2 + y2 below the plane z = 1.

10. f(x, y, z) = x2 + y2; σ is the surface of the sphere

x2 + y2 + z2 = a2.

In Exercises 11 and 12, set up, but do not evaluate, an iterated

integral equal to the given surface integral by projecting σ on

(a) the xy-plane, (b) the yz-plane, and (c) the xz-plane.
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11.

∫∫

σ

xyz dS, where σ is the portion of the plane

2x + 3y + 4z = 12 in the first octant.

12.

∫∫

σ

xz dS, where σ is the portion of the sphere

x2 + y2 + z2 = a2 in the first octant.

C 13. Use a CAS to confirm that the three integrals you obtained

in Exercise 11 are equal, and find the exact value of the

surface integral.

C 14. Try to confirm with a CAS that the three integrals you ob-

tained in Exercise 12 are equal. If you did not succeed, what

was the difficulty?

In Exercises 15 and 16, set up, but do not evaluate, two dif-

ferent iterated integrals equal to the given integral.

15.

∫∫

σ

xyz dS, where σ is the portion of the surface y2 = x

between the planes z = 0, z = 4, y = 1, and y = 2.

16.

∫∫

σ

x2y dS, where σ is the portion of the cylinder

y2 + z2 = a2 in the first octant between the planes

x = 0, x = 9, z = y, and z = 2y.

C 17. Use a CAS to confirm that the two integrals you obtained in

Exercise 15 are equal, and find the exact value of the surface

integral.

C 18. Use a CAS to find the value of the surface integral
∫∫

σ

x2yz dS

over the portion of the elliptic paraboloid z = 5−3x2 −2y2

that lies above the xy-plane.

In Exercises 19 and 20, find the mass of the lamina with

constant density δ0.

19. The lamina that is the portion of the circular cylinder

x2 + z2 = 4 that lies directly above the rectangle

R = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 4} in the xy-plane.

20. The lamina that is the portion of the paraboloid

2z = x2 + y2 inside the cylinder x2 + y2 = 8.

21. Find the mass of the lamina that is the portion of the surface

y2 = 4 − z between the planes x = 0, x = 3, y = 0, and

y = 3 if the density is δ(x, y, z) = y.

22. Find the mass of the lamina that is the portion of the cone

z =
√

x2 + y2 between z = 1 and z = 4 if the density is

δ(x, y, z) = x2z.

23. If a curved lamina has constant density δ0,what relationship

must exist between its mass and surface area? Explain your

reasoning.

24. Show that if the density of the lamina x2 + y2 + z2 = a2

at each point is equal to the distance between that point and

the xy-plane, then the mass of the lamina is 2πa3.

The centroid of a surface σ is defined by

x̄ =

∫∫

σ

x dS

area of σ
, ȳ =

∫∫

σ

y dS

area of σ
, z̄ =

∫∫

σ

z dS

area of σ

In Exercises 25 and 26, find the centroid of the surface.

25. The portion of the paraboloid z = 1
2
(x2 + y2) below the

plane z = 4.

26. The portion of the sphere x2 + y2 + z2 = 4 above the plane

z = 1.

In Exercises 27–30, evaluate the integral
∫∫

σ
f(x, y, z) dS

over the surface σ represented by the vector-valued function

r(u, v).

27. f(x, y, z) = xyz; r(u, v) = u cos vi + u sin v j + 3uk

(1 ≤ u ≤ 2, 0 ≤ v ≤ π/2)

28. f(x, y, z) =
x2 + z2

y
; r(u, v) = 2 cos vi + u j + 2 sin vk

(1 ≤ u ≤ 3, 0 ≤ v ≤ 2π)

29. f(x, y, z) =
1

√

1 + 4x2 + 4y2
;

r(u, v) = u cos vi + u sin v j + u2k

(0 ≤ u ≤ sin v, 0 ≤ v ≤ π)

30. f(x, y, z) = e−z;
r(u, v) = 2 sin u cos vi + 2 sin u sin v j + 2 cos uk

(0 ≤ u ≤ π/2, 0 ≤ v ≤ 2π)

C 31. Use a CAS to approximate the mass of the curved lamina

z = e−x
2−y2

that lies above the region in the xy-plane en-

closed by x2 + y2 = 9 given that the density function is

δ(x, y, z) =
√

x2 + y2.

C 32. The surface σ shown in the accompanying figure, called a

Möbius strip, is represented by the parametric equations

x = (5 + u cos(v/2)) cos v

y = (5 + u cos(v/2)) sin v (−1 ≤ u≤ 1, 0 ≤ v ≤ 2π)

z= u sin(v/2)

(a) Use a CAS to generate a reasonable facsimile of this

surface.

(b) Use a CAS to approximate the location of the centroid

of σ (see the definition preceding Exercise 25).

x
y

z

Figure Ex-32
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16.6 APPLICATIONS OF SURFACE INTEGRALS; FLUX

In this section we will discuss applications of surface integrals in vector fields associ-

ated with fluid flow and electrostatic forces. However, the ideas that we will develop

will be general in nature and applicable to other kinds of vector fields as well.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

FLOW FIELDS
We will be concerned in this section with vector fields in 3-space that involve some type

of “flow”—the flow of a fluid or the flow of charged particles in an electrostatic field, for

example. In the case of fluid flow, the vector field F(x, y, z) represents the velocity of a

fluid particle at the point (x, y, z), and the fluid particles flow along “streamlines” that

are tangential to the velocity vectors (Figure 16.6.1a). In the case of an electrostatic field,

F(x, y, z) is the force that the field exerts on a small unit of positive charge at the point

(x, y, z), and such charges have acceleration in the directions of “electric lines” that are

tangential to the force vectors (Figures 16.6.1b and 16.6.1c).

x

+ –+

The velocity vectors of the 

fluid particles are tangent 

to the streamlines.

By Coulomb's law the electro-

static field resulting from a 

single positive charge is an 

inverse-square field in which F 

is the repulsive force on a 

small unit positive charge.

The electrostatic field F that 

results from two charges of 

equal strength but opposite 

polarity.

(b) (c)(a)

y

z

Figure 16.6.1

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

ORIENTED SURFACES
Our main goal in this section is to study flows of vector fields through permeable surfaces

placed in the field. For this purpose we will need to consider some basic ideas about

surfaces. Most surfaces that we encounter in applications have two sides—a sphere has

an inside and an outside, and an infinite horizontal plane has a top side and a bottom side,

for example. However, there exist mathematical surfaces with only one side. For example,

Figure 16.6.2a shows the construction of a surface called a Möbius strip [in honor of the

German mathematician August Möbius (1790–1868)]. The Möbius strip has only one side in

the sense that a bug can traverse the entire surface without crossing an edge (Figure 16.6.2b).

In contrast, a sphere is two-sided in the sense that a bug walking on the sphere can traverse

If an ant starts at P with its back

facing you and makes one circuit

around the strip, then its back

will face away from you when it

returns to P.  Thus, the Mobius

strip has only one side.

A

B

A B P

(a) (b)

..

Figure 16.6.2
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the inside surface or the outside surface but cannot traverse both without somehow passing

through the sphere. A two-sided surface is said to be orientable, and a one-sided surface is

said to be nonorientable. In the rest of this text we will only be concerned with orientable

surfaces.

In applications, it is important to have some way of distinguishing between the two sides

of an orientable surface. For this purpose let us suppose that σ is an orientable surface that

has a unit normal vector n at each point. As illustrated in Figure 16.6.3, the vectors n and

−n point to opposite sides of the surface and hence serve to distinguish between the two

sides. It can be proved that if σ is a smooth orientable surface, then it is always possible to

choose the direction of n at each point so that n = n(x, y, z) varies continuously over the

surface. These unit vectors are then said to form an orientation of the surface. It can also be

proved that a smooth orientable surface has only two possible orientations. For example, the

surface in Figure 16.6.4 is oriented up by the purple vectors and down by the green vectors.

However, we cannot create a third orientation by mixing the two since this produces points

on the surface at which there is an abrupt change in direction (across the black curve in the

figure, for example).

n

–n

Figure 16.6.3

Figure 16.6.4

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

ORIENTATION OF A SMOOTH
PARAMETRIC SURFACE

When a surface is expressed parametrically, the parametric equations create a natural ori-

entation of the surface. To see why this is so, recall from Section 15.4 that if a smooth

parametric surface σ is given by the vector equation

r = x(u, v)i + y(u, v) j + z(u, v)k

then the unit normal

n = n(u, v) =

∂r

∂u
×
∂r

∂v
∥

∥

∥

∥

∂r

∂u
×
∂r

∂v

∥

∥

∥

∥

(1)

is a continuous vector-valued function ofu and v. Thus, Formula (1) defines an orientation of

the surface; we call this the positive orientation of the parametric surface and we say that n

points in the positive direction from the surface. The orientation determined by −n is called

the negative orientation of the surface and we say that −n points in the negative direction

from the surface. For example, consider the sphere that is represented parametrically by the

vector equation

r(φ, θ) = a sinφ cos θ i + a sinφ sin θ j + a cosφk (0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π)

We showed in Example 9 of Section 15.4 that

n =
1

a
r

This vector points in the same direction as the radius vector r (outward from the center).

Thus, for the given parametrization, the positive orientation of the sphere is outward and

the negative orientation is inward (Figure 16.6.5).

–

+

Figure 16.6.5

•
•
•
•
•
•
•
•

FOR THE READER. See if you can find a parametrization of the sphere in which the positive

direction is inward.



April 4, 2001 14:32 g65-ch16 Sheet number 49 Page number 1141 cyan magenta yellow black

16.6 Applications of Surface Integrals; Flux 1141

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

FLUX
In physics, the term fluid is used to describe both liquids and gases. Liquids are usually

regarded to be incompressible, meaning that the liquid has a uniform density (mass per unit

volume) that cannot be altered by compressive forces. Gases are regarded to be compressible,

meaning that the density may vary from point to point and can be altered by compressive

forces. In this text we will be concerned primarily with incompressible fluids. Moreover,

we will assume that the velocity of the fluid at a fixed point does not vary with time. Fluid

flows with this property are said to be in a steady state.

Our next goal in this section is to define a fundamental concept of physics known as

flux (from the Latin word fluxus, meaning “flow”). This concept is applicable in any vector

field, but we will motivate it in the context of steady-state flow of an incompressible fluid.

We consider the following problem:

16.6.1 PROBLEM. Suppose that an oriented surface σ is immersed in an incompress-

ible, steady-state fluid flow, and assume further that the surface is permeable so that the

fluid can flow through it freely in either direction. Find the net volume of fluid 5 that

passes through the surface per unit of time, where the net volume is interpreted to mean

the volume that passes through the surface in the positive direction minus the volume

that passes through the surface in the negative direction.

To solve this problem, suppose that the velocity of the fluid at a point (x, y, z) on the

surface σ is given by

F(x, y, z) = f(x, y, z)i + g(x, y, z) j + h(x, y, z)k

Let n be the unit normal toward the positive side of σ at the point (x, y, z), and let T

be a unit vector that is orthogonal to n and lies in the plane of F and n. As illustrated in

Figure 16.6.6, the velocity vector F can be resolved into two orthogonal components—

a component (F · T)T along the “face” of the surface σ and a component (F · n)n that

is perpendicular to σ. The component of velocity along the face of the surface does not

contribute to the flow through σ and hence can be ignored in our computations. Moreover,

observe that the sign of F · n determines the direction of flow—a positive value means the

flow is in the direction of n and a negative value means that it is opposite to n.

(F . n)n

F(x, y, z)

(x, y, z)
(F . T)T

n

T

s

Figure 16.6.6

(F . n)n
F(xk, yk, zk)

sk

s

* * *

n(xk, yk, zk)* * *

(xk, yk, zk)* * *

Figure 16.6.7

Surface sk

Area ∆Skn

The volume of fluid 

crossing sk in the 

direction of n per 

unit of time.

Figure 16.6.8

To solve Problem 16.6.1, we subdivide σ into n patches σ1, σ2, . . . , σn with areas

�S1,�S2, . . . , �Sn

If the patches are small and the flow is not too erratic, it is reasonable to assume that the

velocity does not vary much on each patch. Thus, if (x∗
k , y

∗
k , z

∗
k) is any point in the kth patch,

we can assume that F(x, y, z) is constant and equal to F(x∗
k , y

∗
k , z

∗
k) throughout the patch

and that the component of velocity across the surface σk is

F(x∗
k , y

∗
k , z

∗
k) · n(x∗

k , y
∗
k , z

∗
k) (2)

(Figure 16.6.7). Thus, we can interpret

F(x∗
k , y

∗
k , z

∗
k) · n(x∗

k , y
∗
k , z

∗
k)�Sk

as the approximate volume of fluid crossing the patch σk in the direction of n per unit of

time (Figure 16.6.8). For example, if the component of velocity in the direction of n is

F(x∗
k , y

∗
k , z

∗
k) · n = 25 cm/s, and the area of the patch is �Sk = 2 cm2, then the volume of

fluid �Vk crossing the patch in the direction of n per unit of time is approximately

�Vk ≈ F(x∗
k , y

∗
k , z

∗
k) · n(x∗

k , y
∗
k , z

∗
k)�Sk = 25 cm/s · 2 cm2 = 50 cm3/s

In the case where the velocity component F(x∗
k , y

∗
k , z

∗
k) · n(x∗

k , y
∗
k , z

∗
k) is negative, the flow

is in the direction opposite to n, so that −�Vk is the approximate volume of fluid crossing

the patch σk in the direction opposite to n per unit time. Thus, the sum

n
∑

k=1

F(x∗
k , y

∗
k , z

∗
k) · n(x∗

k , y
∗
k , z

∗
k)�Sk
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measures the approximate net volume of fluid that crosses the surface σ in the direction of

its orientation n per unit of time.

If we now increasen in such a way that the maximum dimension of each patch approaches

zero, then it is plausible that the errors in the approximations approach zero, and the limit

5 = lim
n→+�

n
∑

k=1

F(x∗
k , y

∗
k , z

∗
k) · n(x∗

k , y
∗
k , z

∗
k)�Sk (3)

represents the exact net volume of fluid that crosses the surface σ in the direction of its

orientation n per unit of time. The quantity 5 defined by Equation (3) is called the flux of

F across σ. The flux can also be expressed as the surface integral

5 =
∫∫

σ

F(x, y, z) · n(x, y, z) dS (4)

A positive flux means that in one unit of time a greater volume of fluid passes through σ

in the positive direction than in the negative direction, a negative flux means that a greater

volume passes through the surface in the negative direction than in the positive direction,

and a zero flux means that the same volume passes through the surface in each direction.

Integrals of form (4) arise in other contexts as well and are called flux integrals.

•
•
•
•
•
•
•
•

REMARK. If the fluid has mass density δ, then 5δ (volume × density) represents the net

mass of fluid that passes through σ per unit of time.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

EVALUATING FLUX INTEGRALS
An effective formula for evaluating flux integrals can be obtained by applying Theorem

16.5.1 and using Formula (1) for n. This yields
∫∫

σ

F · n dS =
∫∫

R

F · n

∥

∥

∥

∥

∂r

∂u
×
∂r

∂v

∥

∥

∥

∥

dA

=
∫∫

R

F ·

∂r

∂u
×
∂r

∂v
∥

∥

∥

∥

∂r

∂u
×
∂r

∂v

∥

∥

∥

∥

∥

∥

∥

∥

∂r

∂u
×
∂r

∂v

∥

∥

∥

∥

dA

=
∫∫

R

F ·

(

∂r

∂u
×
∂r

∂v

)

dA

In summary, we have the following result.

16.6.2 THEOREM. Let σ be a smooth parametric surface represented by the vector

equation r = r(u, v) in which (u, v) varies over a region R in the uv-plane. If the

component functions of the vector field F are continuous on σ, and if n determines the

positive orientation of σ, then

5 =
∫∫

σ

F · n dS =
∫∫

R

F ·

(

∂r

∂u
×
∂r

∂v

)

dA (5)

where it is understood that the integrand on the right side of the equation is expressed

in terms of u and v.

Example 1 Find the flux of the vector field F(x, y, z) = zk across the downward-oriented

sphere x2 + y2 + z2 = a2.
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Solution. The sphere with outward positive orientation can be represented by the vector-

valued function

r(φ, θ) = a sinφ cos θ i + a sinφ sin θ j + a cosφk (0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π)

From this formula we obtain (see Example 9 of Section 15.4 for the computations)

∂r

∂φ
×
∂r

∂θ
= a2 sin2 φ cos θ i + a2 sin2 φ sin θ j + a2 sinφ cosφk

Moreover, for points on the sphere we have F = zk = a cosφk; hence,

F ·

(

∂r

∂φ
×
∂r

∂θ

)

= a3 sinφ cos2 φ

Thus, it follows from (5) with the parameters u and v replaced by φ and θ that�= ∫∫

σ

F · n dS

=
∫∫

R

F ·

(

∂r

∂φ
×
∂r

∂θ

)

dA

=
∫ 2π

0

∫ π

0

a3 sinφ cos2 φ dφ dθ

= a3

∫ 2π

0

[

−
cos3 φ

3

]π

0

dθ

=
2a3

3

∫ 2π

0

dθ =
4πa3

3
◭

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Although the computations in this example give a correct result, they are

technically flawed in that the parametric representation used for the sphere is not smooth

at φ = 0 or φ = π (see Example 9 of Section 15.4). However, this difficulty can be

circumvented by cutting holes with a small radius in the sphere around the z-axis (to avoid

the problem areas), performing the required computations on the cut surface, and then taking

the limit as the radius approaches zero. It can be shown that this leads to the same result

that we obtained in our formal computations. In general, no problems occur when Formula

(5) is applied directly to spheres that are parametrized as in this example.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Reversing the orientation of the surface σ in (5) reverses the sign n, hence

the sign of F · n, and hence reverses the sign of
�

. This can also be seen physically by

interpreting the flux integral as the volume of fluid per unit time that crosses σ in the positive

direction minus the volume per unit time that crosses in the negative direction—reversing

the orientation of σ changes the sign of the difference. Thus, in Example 1 an inward

orientation of the sphere would produce a flux of −4πa3/3.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

ORIENTATION OF
NONPARAMETRIC SURFACES

Nonparametric surfaces of the form z = g(x, y), y = g(z, x), and x = g(y, z) can be

expressed parametrically using the independent variables as parameters. More precisely,

these surfaces can be represented by the vector equations

r = ui + v j + g(u, v)k, r = vi + g(u, v) j + uk, r = g(u, v)i + u j + vk

z = g(x, y) y = g(z, x) x = g(y, z)

(6–8)

These representations impose positive and negative orientations on the surfaces in accor-

dance with Formula (1). We leave it as an exercise to calculate n and −n in each case and

to show that the positive and negative orientations are as shown in Table 16.6.1.
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Table 16.6.1

z = g(x, y) y = g(z, x) x = g(y, z)

Positive orientation

i + j – k

√( )
2
 + ( )

2
 + 1

–n =

Negative orientation

Positive

k-component

Negative

k-component

Positive orientation

Negative orientation

Positive

j-component

Negative

j-component

Positive orientationPositive

i-component

Negative orientationNegative

i-component

∂z

∂x

∂z

∂x

∂z

∂y

∂z

∂y
i – j +       k

√( )
2
 + ( )

2
 + 1

–n =

∂y

∂x

∂y

∂x

∂y

∂z

∂y

∂z
–i + j +       k

√( )
2
 + ( )

2
 + 1

–n =

∂x

∂y

∂x

∂y

∂x

∂z

∂x

∂z

i – j –       k

√( )
2
 + ( )

2
 + 1

n =

∂x

∂y

∂x

∂y

∂x

∂z

∂x

∂z
–       i + j –       k

√( )
2
 + ( )

2
 + 1

n =

∂y

∂x

∂y

∂x

∂y

∂z

∂y

∂z
–       i –         j + k

√( )
2
 + ( )

2
 + 1

n =

∂z

∂x

∂z

∂x

∂z

∂y

∂z

∂y

The results in Table 16.6.1 can also be obtained using gradients. To see how this can be

done, rewrite the equations of the surfaces as

z− g(x, y) = 0, y − g(z, x) = 0, x − g(y, z) = 0

Each of these equations has the form G(x, y, z) = 0 and hence can be viewed as a level

surface of a function G(x, y, z). Since the gradient of G is normal to the level surface,

it follows that the unit normal n is either ∇G/�∇G�or −∇G/�∇G�. However, if

G(x, y, z) = z−g(x, y), then ∇G has a k-component of 1; ifG(x, y, z) = y−g(z, x), then

∇G has a j-component of 1; and ifG(x, y, z) = x− g(y, z), then ∇G has an i-component

of 1. Thus, it is evident from Table 16.6.1 that in all three cases we have

n =
∇G�∇G� (9)

Moreover, we leave it as an exercise to show that if the surfaces z = g(x, y), y = g(z, x),

and x = g(y, z) are expressed in vector forms (6), (7), and (8), then

∇G =
∂r

∂u
×
∂r

∂v
(10)

[compare (1) and (9)]. Thus, we are led to the following version of Theorem 16.6.2 for

nonparametric surfaces.

16.6.3 THEOREM. Let σ be a smooth surface of the form z = g(x, y), y = g(z, x),

or x = g(y, z), and suppose that the component functions of the vector field F are

continuous on σ. Suppose also that the equation for σ is rewritten as G(x, y, z) = 0 by

taking g to the left side of the equation, and letR be the projection of σ on the coordinate

plane determined by the independent variables of g. If σ has positive orientation, then�= ∫∫

σ

F · n dS =
∫∫

R

F · ∇GdA (11)
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Formula (11) can either be used directly for computations or to derive some more spe-

cific formulas for each of the three surface types. For example, if z = g(x, y), then we have

G(x, y, z) = z− g(x, y), so

∇G = −
∂g

∂x
i −

∂g

∂y
j + k = −

∂z

∂x
i −

∂z

∂y
j + k

Substituting this expression for ∇G in (11) and taking R to be the projection of the surface

z = g(x, y) on the xy-plane yields

∫∫

σ

F · n dS =
∫∫

R

F ·

(

−
∂z

∂x
i −

∂z

∂y
j + k

)

dA (12)σ of the form z = f(x, y)

and oriented up

∫∫

σ

F · n dS =
∫∫

R

F ·

(

∂z

∂x
i +

∂z

∂y
j − k

)

dA (13)σ of the form z = f(x, y)

and oriented down

The derivations of the corresponding formulas when y = g(z, x) and x = g(y, z) are left

as exercises.

Example 2 Let σ be the portion of the surface z = 1 − x2 − y2 that lies above the

xy-plane, and suppose that σ is oriented up, as shown in Figure 16.6.9. Find the flux of the

vector field F(x, y, z) = xi + y j + zk across σ.
y

x

z

z = 1 – x2 – y2 

x2 + y2 = 1 

1

1

(0, 0, 1)

R

Figure 16.6.9

Solution. From (12) the flux�is given by�= ∫∫

σ

F · n dS =
∫∫

R

F ·

(

−
∂z

∂x
i −

∂z

∂y
j + k

)

dA

=
∫∫

R

(xi + y j + zk) · (2xi + 2y j + k) dA

=
∫∫

R

(x2 + y2 + 1) dA Since z = 1 − x2 − y2

on the surface

=
∫ 2π

0

∫ 1

0

(r2 + 1)r dr dθ
Using polar coordinates

to evaluate the integral

=
∫ 2π

0

(

3

4

)

dθ =
3π

2
◭

EXERCISE SET 16.6
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1. Suppose that the surface σ of the unit cube in the accom-

panying figure has an outward orientation. In each part, de-

termine whether the flux of the vector field F(x, y, z) = z j

across the specified face is positive, negative, or zero.

(a) The face x = 1 (b) The face x = 0

(c) The face y = 1 (d) The face y = 0

(e) The face z = 1 (f ) The face z = 0

2. Answer the questions posed in Exercise 1 for the vector field

F(x, y, z) = xi − zk.

y

x

z

1

1

1

s

Figure Ex-1
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3. Answer the questions posed in Exercise 1 for the vector field

F(x, y, z) = xi + y j + zk.

4. What is the flux of the constant vector field F(x, y, z) = i

across the entire surface σ in Figure Ex-1? Explain your

reasoning.

5. Let σ be the cylindrical surface that is represented by the

vector-valued function r(u, v) = cos vi + sin v j + uk with

0 ≤ u ≤ 1 and 0 ≤ v ≤ 2π.

(a) Find the unit normal n = n(u, v) that defines the posi-

tive orientation of σ.

(b) Is the positive orientation inward or outward? Justify

your answer.

6. Let σ be the conical surface that is represented by the

parametric equations x = r cos θ, y = r sin θ, z = r with

0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π.

(a) Find the unit normal n = n(r, θ) that defines the posi-

tive orientation of σ.

(b) Is the positive orientation inward or outward? Justify

your answer.

In Exercises 7–12, find the flux of the vector field F across σ.

7. F(x, y, z) = xi + y j + 2zk; σ is the portion of the surface

z = 1 − x2 − y2 above the xy-plane, oriented by upward

normals.

8. F(x, y, z) = (x + y)i + (y + z) j + (z+ x)k; σ is the por-

tion of the plane x + y + z = 1 in the first octant, oriented

by unit normals with positive components.

9. F(x, y, z) = xi + y j + 2zk; σ is the portion of the cone

z2 = x2 + y2 between the planes z = 1 and z = 2, oriented

by upward unit normals.

10. F(x, y, z) = y j + k; σ is the portion of the paraboloid

z = x2 + y2 below the plane z = 4, oriented by downward

unit normals.

11. F(x, y, z) = xk; the surface σ is the portion of the parab-

oloid z = x2 + y2 below the plane z = y, oriented by down-

ward unit normals.

12. F(x, y, z) = x2i + yx j + zxk; σ is the portion of the plane

6x + 3y + 2z = 6 in the first octant, oriented by unit nor-

mals with positive components.

In Exercises 13–16, find the flux of the vector field F across

σ in the direction of positive orientation.

13. F(x, y, z) = xi + y j + k; σ is the portion of the paraboloid

r(u, v) = u cos vi + u sin v j + (1 − u2)k

with 1 ≤ u ≤ 2, 0 ≤ v ≤ 2π.

14. F(x, y, z) = e−y i − y j + x sin zk; σ is the portion of the

elliptic cylinder

r(u, v) = 2 cos vi + sin v j + uk

with 0 ≤ u ≤ 5, 0 ≤ v ≤ 2π.

15. F(x, y, z) =
√

x2 + y2 k; σ is the portion of the cone

r(u, v) = u cos vi + u sin v j + 2uk

with 0 ≤ u ≤ sin v, 0 ≤ v ≤ π.

16. F(x, y, z) = xi + y j + zk; σ is the portion of the sphere

r(u, v) = 2 sin u cos vi + 2 sin u sin v j + 2 cos uk

with 0 ≤ u ≤ π/3, 0 ≤ v ≤ 2π.

17. Let σ be the surface of the cube bounded by the planes

x = ±1, y = ±1, z = ±1, oriented by outward unit nor-

mals. In each part, find the flux of F across σ.

(a) F(x, y, z) = xi

(b) F(x, y, z) = xi + y j + zk

(c) F(x, y, z) = x2i + y2 j + z2k

18. Let σ be the closed surface consisting of the portion of the

paraboloid z = x2 +y2 for which 0 ≤ z ≤ 1 and capped by

the disk x2 + y2 ≤ 1 in the plane z = 1. Find the flux of the

vector field F(x, y, z) = z j − yk in the outward direction

across σ.

In Exercises 19 and 20, find the flux of F across σ by ex-

pressing σ parametrically.

19. F(x, y, z) = i + j + k; the surface σ is the portion of the

cone z =
√

x2 + y2 below the plane z = 1, oriented by

downward unit normals.

20. F(x, y, z) = xi + y j + zk; σ is the portion of the cylinder

x2 + z2 = 1 between the planes y = 1 and y = −2, ori-

ented by outward unit normals.

21. Let x, y, and z be measured in meters, and suppose that

F(x, y, z) = 2xi − 3y j + zk be the velocity vector (in m/s)

of a fluid particle at the point (x, y, z) in a steady-state fluid

flow.

(a) Find the net volume of fluid that passes in the upward

direction through the portion of the plane x+y+z = 1

in the first octant in 1 s.

(b) Assuming that the fluid has a mass density of 806

kg/m3, find the net mass of fluid that passes in the up-

ward direction through the surface in part (a) in 1 s.

22. Let x, y, and z be measured in meters, and suppose that

F(x, y, z) = −yi + z j + 3xk is the velocity vector (in m/s)

of a fluid particle at the point (x, y, z) in a steady-state in-

compressible fluid flow.

(a) Find the net volume of fluid that passes in the upward

direction through the hemisphere z =
√

9 − x2 − y2 in

1 s.

(b) Assuming that the fluid has a mass density of 1060

kg/m3, find the net mass of fluid that passes in the up-

ward direction through the surface in part (a) in 1 s.

23. (a) Derive the analogs of Formulas (12) and (13) for sur-

faces of the form x = g(y, z).

(b) Let σ be the portion of the paraboloid x = y2 + z2 for

x ≤ 1 and z ≥ 0 oriented by unit normals with negative
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x-components. Use the result in part (a) to find the flux

of

F(x, y, z) = yi − z j + 8k

across σ.

24. (a) Derive the analogs of Formulas (12) and (13) for sur-

faces of the form y = g(z, x).

(b) Let σ be the portion of the paraboloid y = z2 + x2 for

y ≤ 1 and z ≥ 0 oriented by unit normals with positive

y-components. Use the result in part (a) to find the flux

of

F(x, y, z) = xi + y j + zk

across σ.

25. Let F=�r�kr, where r = xi + y j + zk and k is a constant.

(Note that if k = −3, this is an inverse-square field.) Let σ

be the sphere of radius a centered at the origin and oriented

by the outward normal n = r/
�
r
�=r/a.

(a) Find the flux of F across σ without performing any in-

tegrations. [Hint: The surface area of a sphere of radius

a is 4πa2.]

(b) For what value of k is the flux independent of the radius

of the sphere?

26. Let

F(x, y, z) = a2xi + (y/a) j + az2k

and let σ be the sphere of radius 1, centered at the origin

and oriented outward. Approximate all values of a such that

the flux of F across σ is 10.

16.7 THE DIVERGENCE THEOREM

In this section we will be concerned with flux across surfaces, such as spheres, that

“enclose” a region of space. We will show that the flux across such surfaces can be

expressed in terms of the divergence of the vector field, and we will use this result to

give a physical interpretation of the concept of divergence.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

ORIENTATION OF PIECEWISE
SMOOTH CLOSED SURFACES

In the last section we studied flux across general surfaces. Here we will be concerned

exclusively with surfaces that are boundaries of finite solids—the surface of a solid sphere,

the surface of a solid box, or the surface of a solid cylinder, for example. Such surfaces are

said to be closed. A closed surface may or may not be smooth, but most of the surfaces

that arise in applications are piecewise smooth; that is, they consist of finitely many smooth

surfaces joined together at the edges (a box, for example). We will limit our discussion to

piecewise smooth surfaces that can be assigned an inward orientation (toward the interior

of the solid) and an outward orientation (away from the interior). It is very difficult to make

this concept mathematically precise, but the basic idea is that each piece of the surface

is orientable, and oriented pieces fit together in such a way that the entire surface can be

assigned an orientation (Figure 16.7.1).
Box with outward orientation

Figure 16.7.1
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

THE DIVERGENCE THEOREM
In Section 16.1 we defined the divergence of a vector field

F(x, y, z) = f(x, y, z)i + g(x, y, z) j + h(x, y, z)k

as

div F =
∂f

∂x
+
∂g

∂y
+
∂h

∂z

but we did not attempt to give a physical explanation of its meaning at that time. The

following result, known as the Divergence Theorem or Gauss’s
∗

Theorem, will provide us

with a physical interpretation of divergence in the context of fluid flow.

∗
See biography on page 1148.
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16.7.1 THEOREM (The Divergence Theorem). Let G be a solid whose surface σ is ori-

ented outward. If

F(x, y, z) = f(x, y, z)i + g(x, y, z) j + h(x, y, z)k

where f, g, and h have continuous first partial derivatives on some open set containing

G, and if n is the outward unit normal on σ , then

∫∫

σ

F · n dS =
∫∫∫

G

div F dV (1)

∗
CARL FRIEDRICH GAUSS (1777–1855). German mathematician and scientist. Sometimes called the “prince of

mathematicians,” Gauss ranks with Newton and Archimedes as one of the three greatest mathematicians who ever

lived. His father, a laborer, was an uncouth but honest man who would have liked Gauss to take up a trade such

as gardening or bricklaying; but the boy’s genius for mathematics was not to be denied. In the entire history of

mathematics there may never have been a child so precocious as Gauss—by his own account he worked out the

rudiments of arithmetic before he could talk. One day, before he was even three years old, his genius became

apparent to his parents in a very dramatic way. His father was preparing the weekly payroll for the laborers under

his charge while the boy watched quietly from a corner. At the end of the long and tedious calculation, Gauss

informed his father that there was an error in the result and stated the answer, which he had worked out in his head.

To the astonishment of his parents, a check of the computations showed Gauss to be correct!

For his elementary education Gauss was enrolled in a squalid school run by a man named Büttner whose main

teaching technique was thrashing. Büttner was in the habit of assigning long addition problems which, unknown

to his students, were arithmetic progressions that he could sum up using formulas. On the first day that Gauss

entered the arithmetic class, the students were asked to sum the numbers from 1 to 100. But no sooner had Büttner

stated the problem than Gauss turned over his slate and exclaimed in his peasant dialect, “Ligget se’.” (Here it

lies.) For nearly an hour Büttner glared at Gauss, who sat with folded hands while his classmates toiled away.

When Büttner examined the slates at the end of the period, Gauss’s slate contained a single number, 5050—the

only correct solution in the class. To his credit, Büttner recognized the genius of Gauss and with the help of his

assistant, John Bartels, had him brought to the attention of Karl Wilhelm Ferdinand, Duke of Brunswick. The

shy and awkward boy, who was then fourteen, so captivated the Duke that he subsidized him through preparatory

school, college, and the early part of his career.

From 1795 to 1798 Gauss studied mathematics at the University of Göttingen, receiving his degree in absentia

from the University of Helmstadt. For his dissertation, he gave the first complete proof of the fundamental theorem

of algebra, which states that every polynomial equation has as many solutions as its degree. At age 19 he solved a

problem that baffled Euclid, inscribing a regular polygon of 17 sides in a circle using straightedge and compass;

and in 1801, at age 24, he published his first masterpiece, Disquisitiones Arithmeticae, considered by many to

be one of the most brilliant achievements in mathematics. In that book Gauss systematized the study of number

theory (properties of the integers) and formulated the basic concepts that form the foundation of that subject.

In the same year that the Disquisitiones was published, Gauss again applied his phenomenal computational

skills in a dramatic way. The astronomer Giuseppi Piazzi had observed the asteroid Ceres for 1
40

of its orbit, but

lost it in the Sun. Using only three observations and the “method of least squares” that he had developed in 1795,

Gauss computed the orbit with such accuracy that astronomers had no trouble relocating it the following year.

This achievement brought him instant recognition as the premier mathematician in Europe, and in 1807 he was

made Professor of Astronomy and head of the astronomical observatory at Göttingen.

In the years that followed, Gauss revolutionized mathematics by bringing to it standards of precision and rigor

undreamed of by his predecessors. He had a passion for perfection that drove him to polish and rework his papers

rather than publish less finished work in greater numbers—his favorite saying was “Pauca, sed matura” (Few, but

ripe). As a result, many of his important discoveries were squirreled away in diaries that remained unpublished

until years after his death.

Among his myriad achievements, Gauss discovered the Gaussian or “bell-shaped” error curve fundamental in

probability, gave the first geometric interpretation of complex numbers and established their fundamental role in

mathematics, developed methods of characterizing surfaces intrinsically by means of the curves that they contain,

developed the theory of conformal (angle-preserving) maps, and discovered non-Euclidean geometry 30 years

before the ideas were published by others. In physics he made major contributions to the theory of lenses and

capillary action, and with Wilhelm Weber he did fundamental work in electromagnetism. Gauss invented the

heliotrope, bifilar magnetometer, and an electrotelegraph.

Gauss was deeply religious and aristocratic in demeanor. He mastered foreign languages with ease, read

extensively, and enjoyed mineralogy and botany as hobbies. He disliked teaching and was usually cool and

discouraging to other mathematicians, possibly because he had already anticipated their work. It has been said

that if Gauss had published all of his discoveries, the current state of mathematics would be advanced by 50 years.

He was without a doubt the greatest mathematician of the modern era.
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The proof of this theorem for a general solidG is too difficult to present here. However,

we can give a proof for the special case where G is simultaneously a simple xy-solid, a

simple yz-solid, and a simple zx-solid (see Figure 15.5.3 and the related discussion for

terminology).

Proof. Suppose that G has upper surface z = g2(x, y), lower surface z = g1(x, y), and

projection R on the xy-plane. Let σ1 denote the lower surface, σ2 the upper surface, and

σ3 the lateral surface (Figure 16.7.2a). If the upper surface and lower surface meet as in

Figure 16.7.2b, then there is no lateral surface σ3. Our proof will allow for both cases shown

in those figures.

y

x

z

s1

s3

s2

R

G

z = g2(x, y)

z = g1(x, y)

(a)

y

x

z

s1

s2

R

G

z = g2(x, y)

z = g1(x, y)

(b)

Figure 16.7.2

Formula (1) can be expressed as
∫∫

σ

[f(x, y, z)i + g(x, y, z) j + h(x, y, z)k] · n dS =
∫∫∫

G

(

∂f

∂x
+
∂g

∂y
+
∂h

∂z

)

dV

so it suffices to prove the three equalities
∫∫

σ

f(x, y, z)i · n dS =
∫∫∫

G

∂f

∂x
dV (2a)

∫∫

σ

g(x, y, z) j · n dS =
∫∫∫

G

∂g

∂y
dV (2b)

∫∫

σ

h(x, y, z)k · n dS =
∫∫∫

G

∂h

∂z
dV (2c)

Since the proofs of all three equalities are similar, we will prove only the third.

It follows from Theorem 15.5.2 that
∫∫∫

G

∂h

∂z
dV =

∫∫

R

[∫ g2(x,y)

g1(x,y)

∂h

∂z
dz

]

dA =
∫∫

R

[

h(x, y, z)

]g2(x,y)

z=g1(x,y)

dA

so
∫∫∫

G

∂h

∂z
dV =

∫∫

R

[h(x, y, g2(x, y))− h(x, y, g1(x, y))] dA (3)

Next we will evaluate the surface integral in (2c) by integrating over each surface of G

separately. If there is a lateral surface σ3, then at each point of this surface k · n = 0 since

n is horizontal and k is vertical. Thus,
∫∫

σ3

h(x, y, z)k · n dS = 0

Therefore, regardless of whether G has a lateral surface, we can write
∫∫

σ

h(x, y, z)k · n dS =
∫∫

σ1

h(x, y, z)k · n dS +
∫∫

σ2

h(x, y, z)k · n dS (4)

On the upper surface σ2, the outer normal is an upward normal, and on the lower surface

σ1, the outer normal is a downward normal. Thus, Formulas (12) and (13) of Section 16.6

imply that
∫∫

σ2

h(x, y, z)k · n dS =
∫∫

R

h(x, y, g2(x, y))k ·

(

−
∂z

∂x
i −

∂z

∂y
j + k

)

dA

=
∫∫

R

h(x, y, g2(x, y)) dA (5)
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and
∫∫

σ1

h(x, y, z)k · n dS =
∫∫

R

h(x, y, g1(x, y))k ·

(

∂z

∂x
i +

∂z

∂y
j − k

)

dA

= −
∫∫

R

h(x, y, g1(x, y)) dA (6)

Substituting (5) and (6) into (4) and combining the terms into a single integral yields
∫∫

σ

h(x, y, z)k · n dS =
∫∫

R

[h(x, y, g2(x, y))− h(x, y, g1(x, y))] dA (7)

Equation (2c) now follows from (3) and (7).

In words, the Divergence Theorem states:

The flux of a vector field across a closed surface with outward orientation is equal to the

triple integral of the divergence over the region enclosed by the surface.

This is sometimes called the outward flux across the surface.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

USING THE DIVERGENCE THEOREM
TO FIND FLUX

Sometimes it is easier to find the flux across a closed surface by using the Divergence

Theorem than by evaluating the flux integral directly. This is illustrated in the following

example.

Example 1 Use the Divergence Theorem to find the outward flux of the vector field

F(x, y, z) = zk across the sphere x2 + y2 + z2 = a2.

Solution. Let σ denote the outward-oriented spherical surface and G the region that it

encloses. The divergence of the vector field is

div F =
∂z

∂z
= 1

so from (1) the flux across σ is�= ∫∫

σ

F · n dS =
∫∫∫

G

dV = volume of G =
4πa3

3

Note how much simpler this calculation is than that in Example 1 of Section 16.6. ◭

The Divergence Theorem is usually the method of choice for finding the flux across

closed piecewise smooth surfaces with multiple sections, since it eliminates the need for a

separate integral evaluation over each section. This is illustrated in the next three examples.

Example 2 Use the Divergence Theorem to find the outward flux of the vector field

F(x, y, z) = 2xi + 3y j + z2k

across the unit cube in Figure 16.7.3.

y

x

z

s

1

1

1

Figure 16.7.3

Solution. Let σ denote the outward-oriented surface of the cube and G the region that it

encloses. The divergence of the vector field is

div F =
∂

∂x
(2x)+

∂

∂y
(3y)+

∂

∂z
(z2) = 5 + 2z
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so from (1) the flux across σ is�= ∫∫

σ

F · n dS =
∫∫∫

G

(5 + 2z) dV =
∫ 1

0

∫ 1

0

∫ 1

0

(5 + 2z) dz dy dx

=
∫ 1

0

∫ 1

0

[

5z+ z2
]1

z=0
dy dx =

∫ 1

0

∫ 1

0

6 dy dx = 6 ◭

Example 3 Use the Divergence Theorem to find the outward flux of the vector field

F(x, y, z) = x3i + y3 j + z2k

across the surface of the region that is enclosed by the circular cylinder x2 + y2 = 9 and

the planes z = 0 and z = 2 (Figure 16.7.4).y

x

z

x2 + y2 = 9 

3

2

Figure 16.7.4
Solution. Let σ denote the outward-oriented surface and G the region that it encloses.

The divergence of the vector field is

div F =
∂

∂x
(x3)+

∂

∂y
(y3)+

∂

∂z
(z2) = 3x2 + 3y2 + 2z

so from (1) the flux across σ is�= ∫∫

σ

F · n dS =
∫∫∫

G

(3x2 + 3y2 + 2z) dV

=
∫ 2π

0

∫ 3

0

∫ 2

0

(3r2 + 2z)r dz dr dθ Using cylindrical

coordinates

=
∫ 2π

0

∫ 3

0

[

3r3z+ z2r
]2

z=0
dr dθ

=
∫ 2π

0

∫ 3

0

(6r3 + 4r) dr dθ

=
∫ 2π

0

[

3r4

2
+ 2r2

]3

0

dθ

=
∫ 2π

0

279

2
dθ = 279π ◭

Example 4 Use the Divergence Theorem to find the outward flux of the vector field

F(x, y, z) = x3i + y3 j + z3k

across the surface of the region that is enclosed by the hemisphere z =
√

a2 − x2 − y2 and

the plane z = 0 (Figure 16.7.5).y

x

z

z = √a2 – x2 – y2 

s
a

Figure 16.7.5

Solution. Let σ denote the outward-oriented surface and G the region that it encloses.

The divergence of the vector field is

div F =
∂

∂x
(x3)+

∂

∂y
(y3)+

∂

∂z
(z3) = 3x2 + 3y2 + 3z2

so from (1) the flux across σ is
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5 =
∫∫

σ

F · n dS =
∫∫∫

G

(3x2 + 3y2 + 3z2) dV

=
∫ 2π

0

∫ π/2

0

∫ a

0

(3ρ2)ρ2 sinφ dρ dφ dθ Using spherical

coordinates

= 3

∫ 2π

0

∫ π/2

0

∫ a

0

ρ4 sinφ dρ dφ dθ

= 3

∫ 2π

0

∫ π/2

0

[

ρ5

5
sinφ

]a

ρ=0

dφ dθ

=
3a5

5

∫ 2π

0

∫ π/2

0

sinφ dφ dθ

=
3a5

5

∫ 2π

0

[

−cosφ
]π/2

0
dθ

=
3a5

5

∫ 2π

0

dθ =
6πa5

5
◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DIVERGENCE VIEWED AS FLUX
DENSITY

The Divergence Theorem provides a way of interpreting the divergence of a vector field

F. Suppose that G is a small spherical region centered at the point P0 and that its surface,

denoted by σ(G), is oriented outward. Denote the volume of the region by vol(G) and the

flux of F across σ(G) by 5(G). If div F is continuous on G, then across the small region

G the value of div F will not vary much from its value div F(P0) at the center, and we

can reasonably approximate div F by the constant div F(P0) on G. Thus, the Divergence

Theorem implies that the flux 5(G) of F across σ(G) can be approximated as

5(G) =
∫∫

σ(G)

F · n dS =
∫∫∫

G

div F dV ≈ div F(P0)

∫∫∫

G

dV = div F(P0) vol(G)

from which we obtain the approximation

div F(P0) ≈
5(G)

vol(G)
(8)

The expression on the right side of (8) is called the outward flux density of F across G.

If we now let the radius of the sphere approach zero [so that vol(G) approaches zero], then

it is plausible that the error in this approximation will approach zero, and the divergence of

F at the point P0 will be given exactly by

div F(P0) = lim
vol(G)→0

5(G)

vol(G)

which we can express as

div F(P0) = lim
vol(G)→0

1

vol(G)

∫∫

σ(G)

F · n dS (9)

This limit, which is called the outward flux density of F at P0, tells us that in a steady-state

fluid flow, div F can be interpreted as the limiting flux per unit volume at a point. Moreover,

it follows from (8) that for a small spherical regionG centered at a point P0 in the flow, the

outward flux across the surface of G can be approximated as

5(G) ≈ (div F(P0))(vol(G)) (10)

•
•
•
•
•
•
•
•

REMARK. Formula (9) is sometimes taken as the definition of divergence. This is a useful

alternative to Definition 16.1.4 because it does not require a coordinate system.
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

SOURCES AND SINKS
If P0 is a point in an incompressible fluid at which div F(P0) > 0, then it follows from (8)

that 5(G) > 0 for a sufficiently small sphere G centered at P0. Thus, there is a greater

volume of fluid going out through the surface of G than coming in. But this can only

happen if there is some point inside the sphere at which fluid is entering the flow (say by

condensation, melting of a solid, or a chemical reaction); otherwise the net outward flow

through the surface would result in a decrease in density within the sphere, contradicting

the incompressibility assumption. Similarly, if div F(P0) < 0, there would have to be a

point inside the sphere at which fluid is leaving the flow (say by evaporation); otherwise

the net inward flow through the surface would result in an increase in density within the

sphere. In an incompressible fluid, points at which div F(P0) > 0 are called sources and

points at which div F(P0) < 0 are called sinks. Fluid enters the flow at a source and drains

out at a sink. In an incompressible fluid without sources or sinks we must have

div F(P ) = 0

at every pointP . In hydrodynamics this is called the continuity equation for incompressible

fluids and is sometimes taken as the defining characteristic of an incompressible fluid.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

GAUSS’S LAW FOR
INVERSE-SQUARE FIELDS

The Divergence Theorem applied to inverse-square fields (see Definition 16.1.2) produces

a result called Gauss’s Law for Inverse-Square Fields. This result is the basis for many

important principles in physics.

16.7.2 GAUSS’S LAW FOR INVERSE-SQUARE FIELDS. If

F(r) =
c�
r
�

3
r

is an inverse-square field in 3-space, and if σ is a closed orientable surface that surrounds

the origin, then the outward flux of F across σ is

5 =
∫∫

σ

F · n dS = 4πc (11)

y

x

z

s

sa

Oriented

outward

Oriented

inward

Figure 16.7.6

Recall from Formula (5) of Section 16.1 that F can be expressed in component form as

F(x, y, z) =
c

(x2 + y2 + z2)3/2
(xi + y j + zk) (12)

Since the components of F are not continuous at the origin, we cannot apply the Divergence

Theorem across the solid enclosed by σ. However, we can circumvent this difficulty by

constructing a sphere of radius a centered at the origin, where the radius is sufficiently

small that the sphere lies entirely within the region enclosed by σ (Figure 16.7.6). We will

denote the surface of this sphere by σa . The solidG enclosed between σa and σ is an example

of a three-dimensional solid with an internal “cavity.” Just as we were able to extend Green’s

Theorem to multiply connected regions in the plane (regions with holes), so it is possible

to extend the Divergence Theorem to solids in 3-space with internal cavities, provided the

surface integral in the theorem is taken over the entire boundary with the outside boundary

of the solid oriented outward and the boundaries of the cavities oriented inward. Thus, if F

is the inverse-square field in (12), and if σa is oriented inward, then the Divergence Theorem

yields
∫∫∫

G

div F dV =
∫∫

σ

F · n dS +
∫∫

σa

F · n dS (13)

But we showed in Example 5 of Section 16.1 that div F = 0, so (13) yields
∫∫

σ

F · n dS = −
∫∫

σa

F · n dS (14)
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We can evaluate the surface integral over σa by expressing the integrand in terms of com-

ponents; however, it is easier to leave it in vector form. At each point on the sphere the unit

normal n points inward along a radius from the origin, and hence n = −r/�r�. Thus, (14)

yields
∫∫

σ

F · n dS = −
∫∫

σa

c�r�3 r ·

(

−
r�r�) dS

=
∫∫

σa

c�r�4 (r · r) dS

=
∫∫

σa

c�r�2 dS
=
c

a2

∫∫

σa

dS �r�=a on σa

=
c

a2
(4πa2)

The integral is the surface

area of the sphere.

= 4πc

which establishs (11).

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

GAUSS’S LAW IN ELECTROSTATICS
It follows from Example 1 of Section 16.1 with q = 1 that a single charged particle of

charge Q located at the origin creates an inverse-square field

F(r) =
Q

4πǫ0�r�3 r

in which F(r) is the electrical force exerted byQ on a unit positive charge (q = 1) located

at the point with position vector r. In this case Gauss’s law (16.7.2) states that the outward

flux 5 across any closed orientable surface σ that surrounds Q is

5 =
∫∫

σ

F · n dS = 4π

(

Q

4πǫ0

)

=
Q

ǫ0

This result, which is called Gauss’s Law for Electric Fields, can be extended to more than

one charge. It is one of the fundamental laws in electricity and magnetism.

EXERCISE SET 16.7 C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1–4, verify Formula (1) in the Divergence Theo-

rem by evaluating the surface integral and the triple integral.

1. F(x, y, z) = xi + y j + zk; σ is the surface of the cube

bounded by the planes x = 0, x = 1, y = 0, y = 1, z = 0,

z = 1.

2. F(x, y, z) = xi + y j + zk; σ is the spherical surface

x2 + y2 + z2 = 1.

3. F(x, y, z) = 2xi − yz j + z2k; the surface σ is the parab-

oloid z = x2 + y2 capped by the disk x2 + y2 ≤ 1 in the

plane z = 1.

4. F(x, y, z) = xyi + yz j + xzk; σ is the surface of the cube

bounded by the planes x = 0, x = 2, y = 0, y = 2, z = 0,

z = 2.

In Exercises 5–15, use the Divergence Theorem to find the

flux of F across the surface σ with outward orientation.

5. F(x, y, z) = (x2 +y)i+z2 j+ (ey −z)k; σ is the surface of

the rectangular solid bounded by the coordinate planes and

the planes x = 3, y = 1, and z = 2.

6. F(x, y, z) = z3i − x3 j + y3k, where σ is the sphere

x2 + y2 + z2 = a2.

7. F(x, y, z) = (x−z)i+ (y−x) j+ (z−y)k; σ is the surface

of the cylindrical solid bounded by x2 + y2 = a2, z = 0,

and z = 1.

8. F(x, y, z) = xi + y j + zk; σ is the surface of the solid

bounded by the paraboloid z = 1 − x2 − y2 and the xy-

plane.
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9. F(x, y, z) = x3i + y3 j + z3k; σ is the surface of the cylin-

drical solid bounded by x2 + y2 = 4, z = 0, and z = 3.

10. F(x, y, z) = (x2 +y)i+xy j− (2xz+y)k; σ is the surface

of the tetrahedron in the first octant bounded by x+y+z = 1

and the coordinate planes.

11. F(x, y, z) = (x3 − ey)i+ (y3 + sin z) j+ (z3 −xy)k, where

σ is the surface of the solid bounded by z =
√

4 − x2 − y2

and the xy-plane. [Hint: Use spherical coordinates.]

12. F(x, y, z) = 2xzi+yz j+z2k, where σ is the surface of the

hemispherical solid bounded above by z =
√

a2 − x2 − y2

and below by the xy-plane.

13. F(x, y, z) = x2i+y2 j+z2k; σ is the surface of the conical

solid bounded by z =
√

x2 + y2 and z = 1.

14. F(x, y, z) = x2yi−xy2 j+ (z+2)k; σ is the surface of the

solid bounded above by the plane z = 2x and below by the

paraboloid z = x2 + y2.

15. F(x, y, z) = x3i + x2y j + xyk; σ is the surface of the solid

bounded by z = 4 − x2, y + z = 5, z = 0, and y = 0.

16. Let F(x, y, z) = ai + b j + ck be a constant vector field and

let σ be the surface a solidG. Use the Divergence Theorem

to show that the flux of F across σ is zero. Give an informal

physical explanation of this result.

17. Prove that if r = xi+y j+zk and σ is the surface of a solid

G oriented by outward unit normals, then

vol(G) =
1

3

∫∫

σ

r · n dS

where vol(G) is the volume of G.

18. Use the result in Exercise 17 to find the outward flux of the

vector field F(x, y, z) = xi + y j + zk across the surface σ

of the cylindrical solid bounded by x2 + 4x + y2 = 5,

z = −1, and z = 4.

In Exercises 19–23, prove the identity, assuming that F, σ,

andG satisfy the hypotheses of the Divergence Theorem and

that all necessary differentiability requirements for the func-

tions f(x, y, z) and g(x, y, z) are met.

19.

∫∫

σ

curl F · n dS = 0 [Hint: See Exercise 33, Section 16.1.]

20.

∫∫

σ

∇f · n dS =
∫∫∫

G

∇
2
f dV

(

∇
2
f =

∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

)

21.

∫∫

σ

(f∇g) · n dS =
∫∫∫

G

(f∇
2
g + ∇f · ∇g) dV

22.

∫∫

σ

(f∇g − g∇f ) · n dS =
∫∫∫

G

(f∇
2
g − g∇

2
f ) dV

[Hint: Interchange f and g in 21.]

23.

∫∫

σ

(f n) · v dS =
∫∫∫

G

∇f · v dV (v a fixed vector)

24. Find all positive values of k such that

F(r) =
r�
r
�
k

satisfies the condition div F = 0 when r �= 0.

25. In each part, the figure shows a horizontal layer of the vec-

tor field of a fluid flow in which the flow is parallel to the

xy-plane at every point and is identical in each layer (i.e., is

independent of z). For each flow, what can you say about the

sign of the divergence at the origin? Explain your reasoning.

x

y(a)

x

y (b)

26. Find a vector field F(x, y, z) that has

(a) positive divergence everywhere

(b) negative divergence everywhere.

In Exercises 27–30, determine whether the vector field

F(x, y, z) is free of sources and sinks. If it is not, locate

them.

27. F(x, y, z) = (y + z)i − xz3 j + (x2 sin y)k

28. F(x, y, z) = xyi − xy j + y2k

29. F(x, y, z) = x3i + y3 j + z3k

30. F(x, y, z) = (x3 − x)i + (y3 − y) j + (z3 − z)k

C 31. Let σ be the surface of the solid G that is enclosed by the

paraboloid z = 1 − x2 − y2 and the plane z = 0. Use a

CAS to verify Formula (1) in the Divergence Theorem for

the vector field

F = (x2y − z2)i + (y3 − x) j + (2x + 3z− 1)k

by evaluating the surface integral and the triple integral.
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16.8 STOKES’ THEOREM

In this section we will discuss a generalization of Green’s Theorem to three dimensions

that has important applications in the study of vector fields, particularly in the anal-

ysis of rotational motion of fluids. This theorem will also provide us with a physical

interpretation of the curl of a vector field.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

RELATIVE ORIENTATION OF
CURVES AND SURFACES

We will be concerned in this section with oriented surfaces in 3-space that are bounded by

simple closed parametric curves (Figure 16.8.1a). If σ is an oriented surface bounded by

a simple closed parametric curve C, then there are two possible relationships between the

orientations of σ andC, which can be described as follows. Imagine a person walking along

the curveC with his or her head in the direction of the orientation of σ. The person is said to

be walking in the positive direction ofC relative to the orientation of σ if the surface is on the

person’s left (Figure 16.8.1b), and the person is said to be walking in the negative direction

of C relative to the orientation of σ if the surface is on the person’s right (Figure 16.8.1c).

The positive direction ofC establishes a right-hand relationship between the orientations of

σ and C in the sense that if the fingers of the right hand are cupped in the positive direction

of C, then the thumb points (roughly) in the direction of the orientation of σ.

Figure 16.8.1

C

The positive direction of C 

relative to the orientation of s.

(b)

The oriented surface s is 

bounded by the simple closed 

curve C.

(a)

The negative direction of C 

relative to the orientation of s.

(c)

s

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

STOKES’ THEOREM
In Section 16.1 we defined the curl of a vector field

F(x, y, z) = f(x, y, z)i + g(x, y, z) j + h(x, y, z)k

as

curl F =
(

∂h

∂y
−
∂g

∂z

)

i +
(

∂f

∂z
−
∂h

∂x

)

j +
(

∂g

∂x
−
∂f

∂y

)

k =

∣

∣

∣

∣

∣

∣

∣

∣

i j k

∂

∂x

∂

∂y

∂

∂z
f g h

∣

∣

∣

∣

∣

∣

∣

∣

(1)

but we did not attempt to give a physical explanation of its meaning at that time. The

following result, known as Stokes’
∗
Theorem, (see biography on p. 1157) will provide us

with a physical interpretation of the curl in the context of fluid flow.

16.8.1 THEOREM (Stokes’ Theorem). Let σ be a piecewise smooth oriented surface that

is bounded by a simple, closed, piecewise smooth curve C with positive orientation. If

the components of the vector field

F(x, y, z) = f(x, y, z)i + g(x, y, z) j + h(x, y, z)k

are continuous and have continuous first partial derivatives on some open set containing

σ, and if T is the unit tangent vector to C, then

∮

C

F · T ds =
∫∫

σ

(curl F) · n dS (2)

The proof of this theorem is beyond the scope of this text, so we will focus on its applications.



April 4, 2001 14:32 g65-ch16 Sheet number 65 Page number 1157 cyan magenta yellow black

16.8 Stokes’ Theorem 1157

Recall from Formula (32) of Section 16.2 that the integral on the left side of (2) represents

the work performed by the vector field F on a particle that traverses the curveC. Thus, loosely

phrased, Stokes’ Theorem states:

The work performed by a vector field on a particle that traverses a simple, closed,

piecewise smooth curve C in the positive direction can be obtained by integrating the

normal component of the curl over an oriented surface σ bounded by C.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

USING STOKES’ THEOREM TO
CALCULATE WORK

For computational purposes it is usually preferable to use Formula (33) of Section 16.2 to

rewrite the formula in Stokes’ Theorem as

∮

C

F · dr =
∫∫

σ

(curl F) · n dS (3)

Stokes’ Theorem is usually the method of choice for calculating work around piecewise

smooth curves with multiple sections, since it eliminates the need for a separate integral

evaluation over each section. This is illustrated in the following example.

Example 1 Find the work performed by the vector field

F(x, y, z) = x2i + 4xy3 j + y2xk

on a particle that traverses the rectangle C in the plane z = y shown in Figure 16.8.2.

y

x

3

1

R

C

z

s

Figure 16.8.2
Solution. The work performed by the field is

W =
∮

C

F · dr

However, to evaluate this integral directly would require four separate integrations, one

over each side of the rectangle. Instead, we will use Formula (3) to express the work as the

surface integral

W =
∫∫

σ

(curl F) · n dS

in which the plane surface σ enclosed by C is assigned a downward orientation to make

the orientation of C positive, as required by Stokes’ Theorem.

Since the surface σ has equation z = y and

curl F =

∣

∣

∣

∣

∣

∣

∣

∣

i j k

∂

∂x

∂

∂y

∂

∂z

x2 4xy3 xy2

∣

∣

∣

∣

∣

∣

∣

∣

= 2xyi − y2 j + 4y3k

∗
GEORGE GABRIEL STOKES (1819–1903). Irish mathematician and physicist. Born in Skreen, Ireland, Stokes

came from a family deeply rooted in the Church of Ireland. His father was a rector, his mother the daughter of

a rector, and three of his brothers took holy orders. He received his early education from his father and a local

parish clerk. In 1837, he entered Pembroke College and after graduating with top honors accepted a fellowship

at the college. In 1847 he was appointed Lucasian professor of mathematics at Cambridge, a position once held

by Isaac Newton, but one that had lost its esteem through the years. By virtue of his accomplishments, Stokes

ultimately restored the position to the eminence it once held. Unfortunately, the position paid very little and Stokes

was forced to teach at the Government School of Mines during the 1850s to supplement his income.

Stokes was one of several outstanding nineteenth century scientists who helped turn the physical sciences in

a more empirical direction. He systematically studied hydrodynamics, elasticity of solids, behavior of waves in

elastic solids, and diffraction of light. For Stokes, mathematics was a tool for his physical studies. He wrote classic

papers on the motion of viscous fluids that laid the foundation for modern hydrodynamics; he elaborated on the

wave theory of light; and he wrote papers on gravitational variation that established him as a founder of the modern

science of geodesy.

Stokes was honored in his later years with degrees, medals, and memberships in foreign societies. He was

knighted in 1889. Throughout his life, Stokes gave generously of his time to learned societies and readily assisted

those who sought his help in solving problems. He was deeply religious and vitally concerned with the relationship

between science and religion.
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it follows from Formula (13) of Section 16.6 with curl F replacing F that

W =
∫∫

σ

(curl F) · n dS =
∫∫

R

(curl F) ·

(

∂z

∂x
i +

∂z

∂y
j − k

)

dA

=
∫∫

R

(2xyi − y2 j + 4y3k) · (0i + j − k) dA

=
∫ 1

0

∫ 3

0

(−y2 − 4y3) dy dx

= −
∫ 1

0

[

y3

3
+ y4

]3

y=0

dx

= −
∫ 1

0

90 dx = −90 ◭

y

x

z

z = 4 – x2 – y2 

x2 + y2 =  4

R

C

s

Figure 16.8.3

Example 2 Verify Stokes’ Theorem for the vector field F(x, y, z) = 2zi + 3xj + 5yk,

taking σ to be the portion of the paraboloid z = 4 − x2 − y2 for which z ≥ 0 with upward

orientation, and C to be the positively oriented circle x2 + y2 = 4 that forms the boundary

of σ in the xy-plane (Figure 16.8.3).

Solution. We will verify Formula (3). Since σ is oriented up, the positive orientation

of C is counterclockwise looking down the positive z-axis. Thus, C can be represented

parametrically (with positive orientation) by

x = 2 cos t, y = 2 sin t, z = 0 (0 ≤ t ≤ 2π) (4)

Therefore,
∮

C

F · dr =
∮

C

2z dx + 3x dy + 5y dz

=
∫ 2π

0

[0 + (6 cos t)(2 cos t)+ 0] dt

=
∫ 2π

0

12 cos2 t dt = 12

[

1

2
t +

1

4
sin 2t

]2π

0

= 12π

To evaluate the right side of (3), we start by finding curl F. We obtain

curl F =

∣

∣

∣

∣

∣

∣

∣

∣

i j k

∂

∂x

∂

∂y

∂

∂z

2z 3x 5y

∣

∣

∣

∣

∣

∣

∣

∣

= 5i + 2 j + 3k

Since σ is oriented up and is expressed in the form z = g(x, y) = 4 − x2 − y2, it follows

from Formula (12) of Section 16.6 with curl F replacing F that
∫∫

σ

(curl F) · n dS =
∫∫

R

(curl F) ·

(

−
∂z

∂x
i −

∂z

∂y
j + k

)

dA

=
∫∫

R

(5i + 2 j + 3k) · (2xi + 2y j + k) dA

=
∫∫

R

(10x + 4y + 3) dA

=
∫ 2π

0

∫ 2

0

(10r cos θ + 4r sin θ + 3)r dr dθ
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=
∫ 2π

0

[

10r3

3
cos θ +

4r3

3
sin θ +

3r2

2

]2

r=0

dθ

=
∫ 2π

0

(

80

3
cos θ +

32

3
sin θ + 6

)

dθ

=
[

80

3
sin θ −

32

3
cos θ + 6θ

]2π

0

= 12π

As guaranteed by Stokes’ Theorem, the value of this surface integral is the same as the

value of the line integral obtained above. Note, however, that the line integral was simpler

to evaluate and hence would be the method of choice in this case. ◭

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Observe that in Formula (3) the only relationship required between σ and C is

that C be the boundary of σ and that C be positively oriented relative to the orientation of

σ. Thus, if σ1 and σ2 are different oriented surfaces but have the same positively oriented

boundary curve C, then it follows from (3) that
∫∫

σ1

curl F · n dS =
∫∫

σ2

curl F · n dS

For example, the parabolic surface in Example 2 has the same positively oriented boundary

C as the diskR in Figure 16.8.3 with upper orientation. Thus, the value of the surface integral

in that example would not change if σ is replaced by R (or by any other oriented surface

that has the positively oriented circleC as its boundary). This can be useful in computations

because it is sometimes possible to circumvent a difficult integration by changing the surface

of integration.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

RELATIONSHIP BETWEEN GREEN’S
THEOREM AND STOKES’ THEOREM

It is sometimes convenient to regard a vector field

F(x, y) = f(x, y)i + g(x, y) j

in 2-space as a vector field in 3-space by expressing it as

F(x, y) = f(x, y)i + g(x, y) j + 0k (5)

If R is a region in the xy-plane enclosed by a simple, closed, piecewise smooth curve C,

then we can treatR as a flat surface, and we can treat a surface integral overR as an ordinary

double integral over R. Thus, if we orient R up and C counterclockwise looking down the

positive z-axis, then Formula (3) applied to (5) yields
∮

C

F · dr =
∫∫

R

curl F · k dA (6)

But

curl F =

∣

∣

∣

∣

∣

∣

∣

∣

∣

i j k

∂

∂x

∂

∂y

∂

∂z

f g 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −
∂g

∂z
i +

∂f

∂z
j +

(

∂g

∂x
−
∂f

∂y

)

k =
(

∂g

∂x
−
∂f

∂y

)

k

since ∂g/∂z = ∂f /∂z = 0. Substituting this expression in (6) and expressing the integrals

in terms of components yields
∮

C

f dx + g dy =
∫∫

R

(

∂g

∂x
−
∂f

∂y

)

dA

which is Green’s Theorem [Formula (1) of Section 16.4]. Thus, we have shown that Green’s

Theorem can be viewed as a special case of Stokes’ Theorem.
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

CURL VIEWED AS CIRCULATION
Stokes’ Theorem provides a way of interpreting the curl of a vector field F in the context

of fluid flow. For this purpose let σa be a small oriented disk of radius a centered at a point

P0 in a steady-state fluid flow, and let n be a unit normal vector at the center of the disk

that points in the direction of orientation. Let us assume that the flow of liquid past the disk

causes it to spin around the axis through n, and let us try to find the direction of n that

will produce the maximum rotation rate in the positive direction of the boundary curve Ca
(Figure 16.8.4). For convenience, we will denote the area of the disk σa by A(σa); that is,

A(σa) = πa2.

a

n

Ca

sa

P0

Figure 16.8.4

If the direction of n is fixed, then at each point of Ca the only component of F that

contributes to the rotation of the disk about n is the component F · T tangent to Ca (Fig-

ure 16.8.5). Thus, for a fixed n the integral
∮

Ca

F · T ds (7)

can be viewed as a measure of the tendency for the fluid to flow in the positive direction

around Ca . Accordingly, (7) is called the circulation of F around Ca. For example, in the

extreme case where the flow is normal to the circle at each point, the circulation around

Ca is zero, since F · T = 0 at each point. The more closely that F aligns with T along the

circle, the larger the value of F · T and the larger the value of the circulation.
Ca

n

T F

F.T

(F.T)T

Figure 16.8.5 To see the relationship between circulation and curl, suppose that curl F is continuous

on σa , so that when σa is small the value of curl F at any point of σa will not vary much

from the value of curl F(P0) at the center. Thus, for a small disk σa we can reasonably

approximate curl F by the constant value curl F(P0) on σa . Moreover, because the surface

σa is flat, the unit normal vectors that orient σa are all equal. Thus, the vector quantity n in

Formula (3) can be treated as a constant, and we can write
∮

Ca

F · T ds =
∫∫

σa

(curl F) · n dS ≈ curl F(P0) · n

∫∫

σa

dS

where the line integral is taken in the positive direction of Ca . But the double integral in

this equation represents the surface area of σa , so
∮

Ca

F · T ds ≈ [curl F(P0) · n]A(σa)

from which we obtain

curl F(P0) · n ≈
1

A(σa)

∮

Ca

F · T ds (8)

The quantity on the right side of (8) is called the circulation density of F around Ca.

If we now let the radius a of the disk approach zero (with n fixed), then it is plausible that

the error in this approximation will approach zero and the exact value of curl F(P0) · n will

be given by

curl F(P0) · n = lim
a→0

1

A(σa)

∮

Ca

F · T ds (9)

We call curl F(P0) · n the circulation density of F at P0 in the direction of n. This quantity

has its maximum value when n is in the same direction as curl F(P0); this tells us that at each

point in a steady-state fluid flow the maximum circulation density occurs in the direction of

the curl. Physically, this means that if a small paddle wheel is immersed in the fluid so that

the pivot point is at P0, then the paddles will turn most rapidly when the spindle is aligned

with curl F(P0) (Figure 16.8.6). If curl F = 0 at each point of a region, then F is said to be

irrotational in that region, since no circulation occurs about any point of the region.P0

Curl F(P0)

Figure 16.8.6

•
•
•
•
•
•
•
•

REMARK. Formula (9) is sometimes taken as a definition of curl. This is a useful alternative

to Definition 16.1.5 because it does not require a coordinate system.
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EXERCISE SET 16.8 C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The figures in Exercises 1 and 2 show a horizontal layer of

the vector field of a fluid flow in which the flow is parallel

to the xy-plane at every point and is identical in each layer

(i.e., is independent of z). For each flow, state whether you

believe that the curl is nonzero at the origin, and explain your

reasoning. If you believe that it is nonzero, then state whether

it points in the positive or negative z-direction.

1.

x

y
(a) (b)

x

y

2.

x

y(a)

x

y(b)

In Exercises 3–6, verify Formula (2) in Stokes’ Theorem by

evaluating the line integral and the double integral. Assume

that the surface has an upward orientation.

3. F(x, y, z) = (x−y)i+ (y−z) j+ (z−x)k; σ is the portion

of the plane x + y + z = 1 in the first octant.

4. F(x, y, z) = x2i + y2 j + z2k; σ is the portion of the cone

z =
√

x2 + y2 below the plane z = 1.

5. F(x, y, z) = xi + y j + zk; σ is the upper hemisphere

z =
√

a2 − x2 − y2.

6. F(x, y, z) = (z−y)i+ (z+x) j− (x+y)k; σ is the portion

of the paraboloid z = 9 − x2 − y2 above the xy-plane.

In Exercises 7–14, use Stokes’ Theorem to evaluate the inte-

gral

∮

C

F · dr.

7. F(x, y, z) = z2i + 2x j − y3k; C is the circle x2 + y2 = 1

in the xy-plane with counterclockwise orientation looking

down the positive z-axis.

8. F(x, y, z) = xzi + 3x2y2 j + yxk; C is the rectangle in the

plane z = y shown in Figure 16.8.2.

9. F(x, y, z) = 3zi + 4xj + 2yk; C is the boundary of the

paraboloid shown in Figure 16.8.3.

10. F(x, y, z) = −3y2i + 4z j + 6xk; C is the triangle in the

plane z = 1
2
y with vertices (2, 0, 0), (0, 2, 1), and (0, 0, 0)

with a counterclockwise orientation looking down the pos-

itive z-axis.

11. F(x, y, z) = xyi + x2 j + z2k; C is the intersection of the

paraboloid z = x2 + y2 and the plane z = y with a coun-

terclockwise orientation looking down the positive z-axis.

12. F(x, y, z) = xyi + yz j + zxk; C is the triangle in the plane

x+ y+ z = 1 with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1)

with a counterclockwise orientation looking from the first

octant toward the origin.

13. F(x, y, z) = (x − y)i + (y − z) j + (z − x)k; C is the

circle x2 + y2 = a2 in the xy-plane with counterclockwise

orientation looking down the positive z-axis.

14. F(x, y, z) = (z+ sin x)i + (x + y2) j + (y + ez)k; C is the

intersection of the sphere x2 + y2 + z2 = 1 and the cone

z =
√

x2 + y2 with counterclockwise orientation looking

down the positive z-axis.

15. Consider the vector field given by the formula

F(x, y, z) = (x − z)i + (y − x) j + (z− xy)k

(a) Use Stokes’ Theorem to find the circulation around

the triangle with vertices A(1, 0, 0), B(0, 2, 0), and

C(0, 0, 1) oriented counterclockwise looking from the

origin toward the first octant.

(b) Find the circulation density of F at the origin in the

direction of k.

(c) Find the unit vector n such that the circulation density

of F at the origin is maximum in the direction of n.

16. (a) Let σ denote the surface of a solidGwith n the outward

unit normal vector field to σ . Assume that F is a vector

field with continuous first-order partial derivatives on

σ . Prove that
∫∫

σ

(curl F) · n dS = 0

(Hint: Let C denote a simple closed curve on σ that

separates the surface into two (sub)surfaces σ1 and σ2

that share C as their common boundary. Apply Stokes’

Theorem to σ1 and σ2 and add the results.)

(b) The vector field curl(F) is called the curl field of F. In

words, interpret the formula in part (b) as a statement

about the flux of the curl field.

17. In 1831 the physicist Michael Faraday discovered that an

electric current can be produced by varying the magnetic

flux through a conducting loop. His experiments showed

that the electromotive force E is related to the magnetic
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induction B by the equation
∮

C

E · dr = −
∫∫

σ

∂B

∂t
· n dS

Use this result to make a conjecture about the relationship

between curl E and B, and explain your reasoning.

C 18. Let σ be the portion of the paraboloid z = 1 − x2 − y2

for which z ≥ 0, and let C be the circle x2 + y2 = 1 that

forms the boundary of σ in the xy-plane. Assuming that σ

is oriented up, use a CAS to verify Formula (2) in Stokes’

Theorem for the vector field

F = (x2y − z2)i + (y3 − x) j + (2x + 3z− 1)k

by evaluating the line integral and the surface integral.

SUPPLEMENTARY EXERCISES

1. In words, what is a vector field? Give some physical exam-

ples of vector fields.

2. (a) Give a physical example of an inverse-square field F(r)

in 3-space.

(b) Write a formula for a general inverse-square field F(r)

in terms of the radius vector r.

(c) Write a formula for a general inverse-square field

F(x, y, z) in 3-space using rectangular coordinates.

3. Assume that C is the parametric curve x = x(t), y = y(t),

where t varies from a to b. In each part, express the line

integral as a definite integral with variable of integration t .

(a)

∫

C

f(x, y) dx + g(x, y) dy (b)

∫

C

f(x, y) ds

4. (a) Express the mass M of a thin wire in 3-space as a line

integral.

(b) Express the length of a curve as a line integral.

(c) Express the area of a surface as a surface integral.

(d) Express the area of a plane region as a line integral.

5. In each part, give a physical interpretation of the integral.

(a)

∫

C

F · T ds (b)

∫∫

σ

F · n dS

6. State some alternative notations for

∫

C

F · T ds.

7. (a) State the Fundamental Theorem of Work Integrals, in-

cluding all required hypotheses.

(b) State Green’s Theorem, including all of the required

hypotheses.

8. What conditions mustC,D, and F satisfy to be assured that

∫

C

F · dr = 0

around every piecewise smooth curve C in the region D in

2-space?

9. How can you tell whether the vector field

F(x, y) = f(x, y)i + g(x, y) j

is conservative on a simply connected open region D?

10. Make a sketch of a vector field that is not conservative, and

give an argument in support of your answer.

11. Assume that σ is the parametric surface

r = x(u, v)i + y(u, v) j + z(u, v)k

where (u, v) varies over a region R. Express the surface

integral
∫∫

σ

f(x, y, z) dS

as a double integral with variables of integration u and v.

12. State the Divergence Theorem and Stokes’ Theorem, in-

cluding all required hypotheses.

13. Let α and β denote angles that satisfy 0 < β − α ≤ 2π and

assume that r = f(θ) is a smooth polar curve with f(θ) > 0

on the interval [α, β]. Use the formula

A =
1

2

∫

C

−y dx + x dy

to find the area of the region R enclosed by the curve

r = f(θ) and the rays θ = α and θ = β.

14. As discussed in Example 1 of Section 16.1, Coulomb’s law

states that the electrostatic force F(r) that a particle of charge

Q exerts on a particle of charge q is given by the formula

F(r) =
qQ

4πǫ0�r�3 r

where r is the radius vector from Q to q and ǫ0 is the per-

mittivity constant.

(a) Express the vector field F(r) in coordinate form

F(x, y, z) with Q at the origin.

(b) Find the work performed by the vector field F on a

charge q that moves along a straight line from (3, 0, 0)

to (3, 1, 5).

15. As discussed in Section 16.1, it follows from Newton’s Law

of Universal Gravitation that the gravitational force F(r)

exerted by an object of mass M on an object of mass m is

given by the formula

F(r) = −
GmM�r�3 r

where r is the radius vector from M to m and G is the

universal gravitational constant.
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(a) Show that the work W done by the gravitational field

F(r)when the massmmoves from a distance of r1 from

M to a distance of r2 from M is

W = GmM

(

1

r2
−

1

r1

)

(b) The value of the constant GM for the Earth is approxi-

mately 3.99 × 105 km3/s2. Find the work done by the

Earth’s gravitational field on a satellite with a mass of

1000 kg that moves from a perigee of 600 km above the

surface of the Earth to an apogee of 800 km above the

surface of the Earth, assuming the Earth to be a sphere

of radius 6370 km.

16. Let

F(x, y, z) =
x

x2 + y2
i +

y

x2 + y2
j +

z

x2 + y2
k

Sketch the level surface div F = 1.

In Exercises 17–20, use the result in Exercise 16 to confirm

that the centroid of the region is as shown in the figure.

17.

x

y

–a a

x = 0, y = 
4a

3p

18.

x

y

a

x = y = 
4a

3p

19.

x =                , y = 0 
2a

3

sin a

a

x

y

a
a

a

20.

x

y

b

a

y =      x2 b

a2

x =      , y = 
3a

8

3b

5

21. (a) Use Green’s Theorem to prove that
∫

C

f(x) dx + g(y) dy = 0

if f and g are differentiable functions andC is a simple,

closed, piecewise smooth curve.

(b) What does this tell you about the vector field

F(x, y) = f(x)i + g(y) j?

22. The purpose of this exercise is to establish the role of the

curl in describing the rotation of a rigid body. As illustrated

in the accompanying figure, consider a rigid body rotating

about the z-axis of an xyz-coordinate system at a constant

angular speed of ω rad/s. Let P be a point on the body, and

let r be the position vector of P . Thus, the velocity of P is

v = dr/dt , where v is tangent to the circle of rotation of P .

Let θ and φ be the angles shown in the figure, and define

the angular velocity of the point P to be ω = ωk.

(a) Show that v = ω × r.

(b) Show that v = −ωyi + ωx j.

(c) Show that curl v = 2ω.

(d) Is the velocity field v conservative? Justify your answer.

23. Do you think that the surface in the accompanying figure is

orientable? Explain your reasoning.

y
x

z

r
fu

v rad/s

P

Figure Ex-22 Figure Ex-23

24. LetG be a solid with the surface σ oriented by outward unit

normals, suppose that φ has continuous first and second par-

tial derivatives in some open set containingG, and letDnφ

be the directional derivative of φ, where n is an outward unit

normal to σ . Show that
∫∫

σ

Dnφ dS =
∫∫∫

G

[

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2

]

dV

25. Let σ be the sphere x2 + y2 + z2 = 1, let n be an inward

unit normal, and let Dnf be the directional derivative of

f(x, y, z) = x2 + y2 + z2. Use the result in Exercise 24 to

evaluate the surface integral
∫∫

σ

Dnf dS

26. Let F(x, y) = (yexy − 1)i + xexy j.

(a) Show that F is a conservative vector field.

(b) Find a potential function for F.

(c) Find the work performed by the vector field on a parti-

cle that moves along the sawtooth curve represented by

the parametric equations

x = t + sin−1(sin t)

y = (2/π) sin−1(sin t)
(0 ≤ t ≤ 8π)

(see accompanying figure).

5 10 15 20 25

-1

1

x

y

Figure Ex-26
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27. Let F(x, y) = yi − 2xj.

(a) Find a nonzero function h(x) such that h(x)F(x, y) is

a conservative vector field.

(b) Find a nonzero function g(y) such that g(y)F(x, y) is

a conservative vector field.

28. Let F(x, y, z) = f(x, y, z)i+g(x, y, z) j+h(x, y, z)k and

suppose that f , g, and h are continuous and have continuous

first partial derivatives in a region. It was shown in Exercise

25 of Section 16.3 that if F is conservative in the region,

then

∂f

∂y
=
∂g

∂x
,

∂f

∂z
=
∂h

∂x
,

∂g

∂z
=
∂h

∂y

there. Use this result and Stokes’ Theorem to help show that

F is conservative in an open spherical region if and only if

curl F = 0 in that region.

In Exercises 29 and 30, use the result in Exercise 28 to deter-

mine whether F is conservative. If so, find a potential function

for it.

29. (a) F(x, y, z) = z2i + e−y j + 2xzk

(b) F(x, y, z) = xyi + x2 j + sin zk

30. (a) F(x, y, z) = sin xi + z j + yk

(b) F(x, y, z) = zi + 2yz j + y2k

EXPANDING THE CALCULUS HORIZON

Hurricane Modeling

Each year population centers throughout the world are ravaged by hurricanes, and

it is the mission of the National Hurricane Center to minimize the damage and loss

of life by issuing warnings and forecasts of hurricanes developing in the Caribbean,

Atlantic, Gulf of Mexico, and Eastern Pacific regions. Your assignment as a trainee

at the Center is to construct a simple mathematical model of a hurricane using basic

principles of fluid flow and properties of vector fields.

Modeling Assumptions

You have been notified of a developing hurricane in the Bahamas (designated hurricane Isaac)

and have been asked to construct a model of its velocity field. Because hurricanes are complicated

three-dimensional fluid flows, you will have to make many simplifying assumptions about the

structure of a hurricane and the properties of the fluid flow. Accordingly, you decide to model

the moisture in Isaac as an ideal fluid, meaning that it is incompressible and its viscosity can be

ignored. An incompressible fluid is one in which the density of the fluid is the same at all points

and cannot be altered by compressive forces. Experience has shown that water can be regarded as

incompressible but water vapor cannot. However, incompressibility is a reasonable assumption

for a basic hurricane model because a hurricane is not restricted to a closed container that would

produce compressive forces.

All fluids have a certain amount of viscosity, which is a resistance to flow—oil and molasses

have a high viscosity, whereas water has almost none at subsonic speeds. Thus, it is reasonable

to ignore viscosity in a basic model. Next, you decide to assume that the flow is in a steady state,

meaning that the velocity of the fluid at any point does not vary with time. This is reasonable over

very short time periods for hurricanes that move and change slowly. Finally, although hurricanes

are three-dimensional flows, you decide to model a two-dimensional horizontal cross section, so

you make the simplifying assumption that the fluid in the cross section flows horizontally.
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The photograph of Isaac shown at the beginning of this module reveals a typical pattern of a

Caribbean hurricane—a counterclockwise swirl of fluid around the eye through which the fluid

exits the flow in the form of rain. The lower pressure in the eye causes an inward-rushing air mass,

and circular winds around the eye contribute to the swirling effect.

Your first objective is to find an explicit formula for Isaac’s velocity field F(x, y), so you begin

by introducing a rectangular coordinate system with its origin at the eye and its y-axis pointing

north. Moreover, based on the hurricane picture and your knowledge of meteorological theory,

you decide to build up the velocity field for Isaac from the velocity fields of simpler flows—a

counterclockwise “vortex flow” F1(x, y) in which fluid flows counterclockwise in concentric

circles around the eye and a “sink flow” F2(x, y) in which the fluid flows in straight lines toward

a sink at the eye. Once you find explicit formulas for F1(x, y) and F2(x, y), your plan is to

use the superposition principle from fluid dynamics to express the velocity field for Isaac as

F(x, y) = F1(x, y)+ F2(x, y).

Modeling a Vortex Flow

A counterclockwise vortex flow of an ideal fluid around the origin has four defining characteristics

(Figure 1a on the following page):

• The velocity vector at a point (x, y) is tangent to the circle that is centered at the origin and

passes through the point (x, y).

• The direction of the velocity vector at a point (x, y) indicates a counterclockwise motion.

• The speed of the fluid is constant on circles centered at the origin.

• The speed of the fluid along a circle is inversely proportional to the radius of the circle (and

hence the speed approaches +� as the radius of the circle approaches 0).

In fluid dynamics, the strength k of a vortex flow is defined to be 2π times the speed of the fluid

along the unit circle. If the strength of a vortex flow is known, then the speed of the fluid along

any other circle can be found from the fact that speed is inversely proportional to the radius of the

circle. Thus, your first objective is to find a formula for a vortex flow F1(x, y) with a specified

strength k.

• • • • • • • • • • •

Exercise 1 Show that

F1(x, y) = −
k

2π(x2 + y2)
(yi − xj)

is a model for the velocity field of a counterclockwise vortex flow around the origin of strength

k by confirming that

(a) F1(x, y) has the four properties required of a counterclockwise vortex flow around the origin;

(b) k is 2π times the speed of the fluid along the unit circle.

• • • • • • • • • • •

Exercise 2 Use a graphing utility that can generate vector fields to generate a vortex flow of

strength 2π.

Modeling a Sink Flow

A uniform sink flow of an ideal fluid toward the origin has four defining characteristics (Figure 1b):

• The velocity vector at every point (x, y) is directed toward the origin.

• The speed of the fluid is the same at all points on a circle centered at the origin.

• The speed of the fluid at a point is inversely proportional to its distance from the origin (from

which it follows that the speed approaches +� as the distance from the origin approaches 0).

• There is a sink at the origin at which fluid leaves the flow.

As with a vortex flow, the strength q of a uniform sink flow is defined to be 2π times the speed of

the fluid at points on the unit circle. If the strength of a sink flow is known, then the speed of the
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fluid at any point in the flow can be found using the fact that the speed is inversely proportional

to the distance from the origin. Thus, your next objective is to find a formula for a uniform sink

flow F2(x, y) with a specified strength q.

• • • • • • • • • • •

Exercise 3 Show that

F2(x, y) = −
q

2π(x2 + y2)
(xi + y j)

is a model for the velocity field of a uniform sink flow toward the origin of strength q by confirming

the following facts:

(a) F2(x, y) has the four properties required of a uniform sink flow toward the origin.

[A reasonable physical argument to confirm the existence of the sink will suffice.]

(b) q is 2π times the speed of the fluid at points on the unit circle.

• • • • • • • • • • •

Exercise 4 Use a graphing utility that can generate vector fields to generate a uniform sink

flow of strength 2π.

x

y

(a)

x

y

(b)

Figure 1

A Basic Hurricane Model

It now follows from Exercises 1 and 3 that the vector field F(x, y) for a hurricane model that

combines a vortex flow around the origin of strength k and a uniform sink flow toward the origin

of strength q is

F(x, y) = −
1

2π(x2 + y2)
[(qx + ky)i + (qy − kx) j] (1)

• • • • • • • • • • •

Exercise 5

(a) Figure 2 shows a vector field for a hurricane with vortex strength k = 2π and sink strength

q = 2π. Use a graphing utility that can generate vector fields to produce a reasonable facsimile

of this figure.

(b) Make a conjecture about the effect of increasing k and keeping q fixed, and check your

conjecture using a graphing utility.

(c) Make a conjecture about the effect of increasing q and keeping k fixed, and check your

conjecture using a graphing utility.
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Figure 2

Modeling Hurricane Isaac

You are now ready to apply Formula (1) to obtain a model of the vector field F(x, y) of hurricane

Isaac. You need some observational data to determine the constants k and q, so you call the

Technical Support Branch of the Center for the latest information on hurricane Isaac. They report

that 20 km from the eye the wind velocity has a component of 15 km/h toward the eye and a

counterclockwise tangential component of 45 km/h.

• • • • • • • • • • •

Exercise 6

(a) Find the strengths k and q of the vortex and sink for hurricane Isaac.

(b) Find the vector field F(x, y) for hurricane Isaac.

(c) Estimate the size of hurricane Isaac by finding a radius beyond which the wind speed is less

than 5 km/h.

Streamlines for the Basic Hurricane Model

The paths followed by the fluid particles in a fluid flow are called the streamlines of the flow.

Thus, the vectors F(x, y) in the velocity field of a fluid flow are tangent to the streamlines. If the

streamlines can be represented as the level curves of some function ψ(x, y), then the function ψ

is called a stream function for the flow. Since ∇ψ is normal to the level curves ψ(x, y) = c, it

follows that ∇ψ is normal to the streamlines; and this in turn implies that

∇ψ · F = 0 (2)

Your plan is to use this equation to find the stream function and then the streamlines of the basic

hurricane model.

Since the vortex and sink flows that produce the basic hurricane model have a central sym-

metry, intuition suggests that polar coordinates may lead to simpler equations for the streamlines

than rectangular coordinates. Thus, you decide to express the velocity vector F at a point (r, θ)

in terms of the orthogonal unit vectors

ur = cos θ i + sin θ j and uθ = − sin θ i + cos θ j

The vector ur , called the radial unit vector, points away from the origin, and the vector uθ , called

the transverse unit vector, is obtained by rotating ur counterclockwise 90◦ (Figure 3).

• • • • • • • • • • •

Exercise 7 Show that the vector field for the basic hurricane model given in (1) can be expressed

in terms of ur and uθ as

F = −
1

2πr
(qur − kuθ )
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ur

ur = cos ui + sin uj

uu

uu = –sin ui + cos uj F

u

u
u = 0

u = p/2

(r, u)r

11

x

y

F decomposed into radial and 

transverse components at (r, u).

Figure 3

It follows from Exercise 75 of Section 14.6 that the gradient of the stream function can be

expressed in terms of ur and uθ as

∇ψ =
∂ψ

∂r
ur +

1

r

∂ψ

∂θ
uθ

• • • • • • • • • • •

Exercise 8 Confirm that for the basic hurricane model the orthogonality condition in (2) is

satisfied if

∂ψ

∂r
=
k

r
and

∂ψ

∂θ
= q

• • • • • • • • • • •

Exercise 9 By integrating the equations in Exercise 8, show that

ψ = k ln r + qθ

is a stream function for the basic hurricane model.

• • • • • • • • • • •

Exercise 10 Show that the streamlines for the basic hurricane model are logarithmic spirals of

the form

r = Ke−qθ
/k (K > 0)

• • • • • • • • • • •

Exercise 11 Use a graphing utility to generate some typical streamlines for the basic hurricane

model with vortex strength 2π and sink strength 2π.

Streamlines for Hurricane Isaac

• • • • • • • • • • •

Exercise 12 In Exercise 6 you found the strengths k and q of the vortex and sink for hurricane

Isaac. Use that information to find a formula for the family of streamlines for Isaac; and then use

a graphing utility to graph the streamline that passes through the point that is 20 km from the eye

in the direction that is 45◦NE from the eye.
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