

Arquitetura de Computadores 2017/18

Ficha 1

Tópicos: Representação de dados, tipos e dimensões. Introdução ao C.

Exercícios sobre bases e representação de dados

Observação: O objetivo desta secção é recordar as bases numéricas e a representação binária.

- **1.** Considere a representação binária dos bits presentes na memória de um computador com palavras de 7 bits. Complete a tabela interpretando esses bits como:
 - **números sem sinal**, apresentando o valor em base 10 (decimal) e em base 16 (hexadecimal);
 - **números com sinal** em complemento para 2;
 - caracteres na norma ASCII.

binário	s/sinal dec.	s/sinal hex	c/sinal dec	car ASCII
0101010				
1000110				
1000011				
1010100				
0001010				
0100001				
0001000				

2. Apresente a representação binária (complemente para dois) dos valores decimais apresentados na tabela.

decimal	5 bit	8 bit	12 bit
5			
-3			
-16			
15			
35			
260			

- **3.** Para o caso da representação de números em palavras de 7 bits indique:
 - a) Quantos números diferentes se podem representar em cada palavra, para números em binário, em hexadecimal e em decimal, com ou sem sinal?
 - b) Quantos caracteres diferentes serão no máximo possíveis representar?
 - c) Quais são o maior e o menor números que se podem representar sem sinal (dê a resposta em base 10 e em base 2)?
 - d) Quais são o maior e o menor números representáveis com sinal em complemento p/2 (dê a resposta em base 10 e em base 2)?

2829-516 CAPARICA	Tel: +351 212 948 536 Fax: +351 212 948 541 di.secretariado@fct.unl.pt	www.fct.unl.pt

- **4.** Crie um programa em Java que escreva quantos bytes são usados por cada tipo: short, int, long, float e double. Escreva também os maiores e menores valores representáveis por cada um. Sugestão: veja as constantes nas classes Short, Integer, Long, Float e Double. (http://docs.oracle.com/javase/8/docs/api/)
- **5.** a) Crie um programa em C que imprime o tamanho em bytes de cada um dos tipos seguintes: char, short, int, unsigned int, long, unsigned long, unsigned long long, float, double. Para isso, utilize:
 - "sizeof (T)", operador que devolve o tamanho ocupado por T em bytes (o valor devolvido é um unsigned long);
 - "printf("texto $%lu\n", N$)", função que imprime "texto N" mudando de linha, onde N é um unsigned long[†] que será representado em base dez.
 - *Nota:* em C os valores obtidos dependem da arquitetura onde executa o programa.
 - b) Complete o programa anterior para escrever também o valor das constantes seguintes, definidas em limits.h: SHRT_MIN, SHRT_MAX, INT_MIN, INT_MAX, UINT_MAX, LONG_MIN, LONG_MAX, ULONG_MAX, LLONG_MIN, LLONG_MAX, ULLONG_MAX. Note que no *printf* deve indicar na formatação o tipo de dados que quer escrever e respectiva representação de acordo com o tipo da constante. Assim, deve usar %u para unsigned int, %ld para long int, etc. (veja o manual "man 3 printf" ou documentação sobre o C). Justifique os valores dessas constantes com as dimensões antes obtidas para os tipos de dados respetivos.
- **6.** Considere a linguagem Java e os operadores binários &, | , ~, >> e << . Crie um programa em Java que, para uma variável byte b, escreve no ecrã o resultado de cada uma das expressões a seguir indicadas.
 - a) Colocar o bit 1 de b a 1, mantendo os outros inalterados;
 - b) Colocar os 4 bits mais significativos de b a 0, mantendo os outros inalterados;
 - c) Colocar o bit 2 de b a 0, mantendo os outros inalterados;
 - d) Determinar se o bit 0 de b é 0 ou 1;
 - e) Multiplicar b por 16 (sem usar *);
 - f) Dividir b por 4 (divisão inteira sem usar /);
 - g) Multiplicar b por 12 (sem usar *);

Teste, escrevendo o resultado para b com os valores: 127, 0x86, 0b00110011. Para tal escreva em base dez e em binário o valor inicial de b e o resultado de cada expressão. Justifique os resultados. Sugestão: Veja o método Java Integer. toBinaryString().

- 7. Repita o exercício anterior na linguagem C. Declare b como unsigned char. Para testar, escreva os valores em decimal e em hexadecimal (dado que não tem uma função para escrever um valor em binário).
- **8.** Admita agora que não existe o método toBinaryString. Escreva em Java um método que permita escrever a representação binária de um valor do tipo int:

void printBin(int val)

9. Repita o exercício anterior na linguagem C.

Campus de Caparica lel: +351 212 948 536
2829-516 CAPARICA fisceretariado@fct.unl.pt
di.secretariado@fct.unl.pt

[†] Em arquiteturas de 32 bits é provável que sizeof devolva um unsigned int (se assim for use %u no printf)

Mais informação

O seguinte endereço indica uma página Web com informação detalhada sobre comandos Linux e a shell (CLI): http://linuxcommand.org/

Sobre a linguagem de programação C:

Kernighan; Dennis M. Ritchie (March 1988). The C Programming Language (2nd ed.). Englewood Cliffs, NJ: Prentice Hall. ISBN 0-13-110362-8.

e outros (por exemplo): http://publications.gbdirect.co.uk/c_book/

http://www.cprogramming.com/tutorial/c-tutorial.html

Para ter o Linux no seu computador pode, em vez de instalar o sistema, seguir a seguinte sugestão (para Windows e para macOS):

- 1. instale o VirtualBox 5.2.8-121009 de www.virtualbox.org para o seu sistema.
- 2. obtenha a imagem de Linux já instalado fornecido pelos docentes (https://goo.gl/hJeik2).
- 3. lance o virtualbox e, no menu, escolha "import appliance..." indicando o ficheiro da imagem. Pode depois apagar este download.

Para a instalação correr bem recomenda-se que tenha no seu computador >2GB de memória e >5GB de espaço livre em disco. Para login: user password: user